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Abstract— This paper is about underpinning long-term
operations of fleets of vehicles using visual localisation. In
particular it examines ways in which vehicles, considered as
independent agents, can share, update and leverage each others’
visual experiences in a mutually beneficial way. We draw on
our previous work in Experience-based Navigation (EBN) [1],
in which a visual map supporting multiple representations of
the same place is built, yielding real-time localisation capability
for a solitary vehicle. We now consider how any number of
such agents might operate in concert via data sharing policies
that are germane to the shared task of lifelong localisation.
We rapidly construct considerable maps by the conjoining of
work distributed to asynchronous processes, and share expertise
amongst the team by the selective dispensing of mission-specific
map contents. We demonstrate and evaluate our system against
100km of data collected in North Oxford over a period of
a month featuring diverse deviation in appearance due to
atmospheric, lighting, and structural dynamics. We show that
our framework is capable of creating maps in a fraction of the
time required by single-agent EBN, with no significant loss in
localisation robustness, and is able to furnish robots on real-
world forays with maps which require much less storage.

I. INTRODUCTION
This paper considers important aspects of the data manage-

ment and data exploitation that arise when we consider the
long-term operation of fleets of autonomous vehicles using
computer vision. Such fleets will need to deal with marked
variation of scene appearance and structure over time. While
scene change is often experienced at the level of individual
agents, there is a need and great boon in intelligently
sharing individual experiences across the collaborating team
to improve fleetwide localisation robustness and to avoid the
ceaseless accumulation of redundant data.

Seamlessly dealing with stark scene change (i.e not getting
lost) is difficult, and we have previously addressed it with a
map of “experiences”, where an experience is a single repre-
sentation of the environment (or part of it) under particular
conditions, which augments the map at runtime.

While this approach has been shown to provide significant
robustness to appearance change, it can prove computation-
ally demanding, as environments which are variegated in
their appearance may need many overlapping experiences
to capture the full spectrum of change. Then, as experience
density increases, the machine which the robot is equipped
with must (on average) do more work to obtain a successful
localisation. This will be particularly aggravated by the
totality of experiences over the lifetime operation of a fleet
of vehicles, where the question of sharing independently
gathered experience data has not been adequately addressed,
most simply manifest in the lack of an intuitive guide for the
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Fig. 1. Our centralised versioning framework facilitates building, manag-
ing, and sharing experience maps in a team of robots which are working
towards the common goal of localising well in a changing environment. In
this simple example, two robots embark on tentative forays into the world,
and experience it as it appears to them: mapping (red) when there is an
insufficient map representation, and localising (green) when possible. They
hand off to a central manager equipped with the ability to rapidly incorporate
their offerings, and the savvy to distribute some highly relevant portion of
the result to a third robot, which can now localise better, and may experience
new parts of the world (black). © Digital Designware / MR Clipart 2009.

optimum consolidation of all sensory input available. Clearly,
some management policies are required.

This work presents a centralised framework for version
control of experience maps, a motivating illustration for
which we show in Figure 1, geared towards the lifetime oper-
ation of a team of robots working towards the common goal
of localising well within a variable environment. We show
how periodically (between forays) we can distribute the map
construction (quickly assembled, approximately optimal, and
of a fine quality) and deploy highly relevant portions of this
privileged map to (perhaps resource-constrained) robots in
the field, with no significant loss in representational power.

This paper proceeds by reviewing existing literature in
Section II and discusses some preliminary concepts in
Section III. A framework for the effective management
of experience maps proffered by asynchronous processes
is presented in Section IV, which we sometimes refer to
informally as “dreaming” (in the sense of post-rationalisation
of a day’s experience). We show in Section V some choices
for implementation, which are instantiations of generally
useful management policies. Finally, we present our results
in Section VI, demonstrating our competency in the lifelong
localisation of fleets of resource-constrained robots.

II. RELATED WORK
Mapping and localisation in the space of appearance,

particularly on the scale of data collected over the lifetime
operation of fleets of robots, demand of us the provision of
some robustness to unmodelled modes of appearance change
(through ephemeral or enduring environmental, structural
and viewpoint changes). Towards lifelong navigation of this
kind, early exploitation of generative models describing the



co-occurrence of vocabulary elements are used in robust
place recognition [2], and aggregation of scene variation
[3]. More recent work has involved searching for consistent
sequences of image matches [4], which Pepperell et al. [5]
have extended to matching places from day to night.

In contrast, Experience-based Navigation (EBN) curates
a database of distinct visual experiences which in tandem
represent change in the world [6, 1, 7]. Until now, we have
not included a framework for distributing experience of the
world to asynchronous agents, or (conversely) the intelligent
incorporation of sensory input from the fleet. The community
is allied with version control systems (VCS), to manage file
history [8]. We show that by applying similar concepts, we
can build maps quicker than single-agent EBN (with no loss
in map quality) and leverage experience within the fleet for
more robust localisation of novice agents. In contrast to [9],
we avoid globally consistent metric maps.

Yet, without intelligent predictions about which memories
to next consider, an unmanageable list of experiences (to
search and update) manifests itself, imposing unreasonable
requirements on the disk space of field robots. Hence, much
literature tries to prune such ever-growing representations to
a manageable level, either by limiting spatial density [10],
aggregation of cumulative visual experience through topics
[11], or the inclusion of only landmarks that are most useful
for place recognition [12]. We abhor the deletion of (perhaps
ultimately useful) experience, and maintain a comprehensive
map in a central repository, while selecting only highly
relevant subsets of the map for deployment on robots in the
field in order to work with the storage constraint.

Overcoming experience density by attempting matches
in a small set of experiences commonly localised against
together as in [7] may still result in longer average times to
localise particularly when regaining localisation from a lost
state (linear in the size of the map). Our selective distribution
of smaller maps with more relevant content will alleviate this.

Multi-agent systems (MAS), sharing exteroceptive mea-
surements, can be exploited to add redundancy and improve
the comprehensiveness of world representation. Cooperative
navigation based on the Extended Kalman Filtering with
interleaved update algorithms [13] and central optimal es-
timation of all robot poses [14] both require robust and
efficient communication of robot-to-robot pose information
[15]. Our system mitigates such ruinous associations by
expediting a search, first attempted more greedily in [1], of
the best order in which to incorporate sensory contributions
from each robot in order to initially capture more surprising
and diverse information in the experience map.

Our framework will have ubiquitous applicability to sys-
tems localising in experience maps inspired by somewhat
different sensor modalities, such as the LIDAR-based work
of Maddern et al. [16], but is validated here by a clear
improvement on single-agent EBN using stereo cameras.

III. PRELIMINARIES
We begin by establishing some prerequisite knowledge of

the operation of single-agent EBN.
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Fig. 2. Experience graphs are implemented as a database of nodes,
n, connected by directed edges, which define topometric neighbourhoods
linked by 6DoF relative pose, Tq . An adjacent topology, “Path Memory” [7]
records the history of localisation success, P . Frames are uniquely identified
across databases through the use of 128-bit UUIDs, u.

A. Stereo localisation in experience maps
As shown in Figure 2 the underlying representation of

the world is a topometric experience graph G, where nodes
store 3D landmarks and edges store six degree of freedom
(6DoF) relative poses, both acquired from a visual odometry
(VO) [17] pipeline that is able to perform joint optimisation
of local landmarks and frame-to-frame relative pose between
stereoscopic frames. During fleetwide sharing of information,
the estimation must be general to the intrinsic and extrinsic
properties of incoming frames due to an exchange of frames
between agent and server, and back to (a perhaps differently
configured) agent. Localisation is achieved by breadth-first
searches in a local graph neighbourhood, and is considered
successful on obtaining a stereo match with sufficient inliers.

B. Relocalisation
Resets and failures, however, are mitigated by a FAB-MAP

search in appearance space [2]. EBN leverages an open-
source FAB-MAP implementation [18]. This proves to be the
bottleneck performance due to the looking up of a vocabulary
match across all nodes in the database (linear in the database
size). Deploying intelligently subsampled maps - as we do -
alleviates this bottleneck.

C. Path memory
The history and connectedness of successful localisations

form a topology atop the topometric poses called “Path
Memory”, a term introduced by Linegar et al. [7], which
effectively relates nodes that represent a view of the envi-
ronment under similar conditions. We will show that we can
leverage this historical colocalisation of database content to
select statistically relevant sequences of nodes to download.

D. Unique data identification
As exemplified in Figure 2, we use 128-bit universally

unique identifiers (UUIDs) [19] to annotate each database
node. This ensures the ability to track the lifetime usage
of images used in experiences as they are passed around
between robots and processes, and also ensures that no
duplication of frames takes place, in the case that a robot
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(a) Processing blocks. A single EBN core operates
on a stereo log. Sequential processing of several logs
to produce a map is indicated by an EBN instance.
We indicate the incorporation of two such maps into
a centralised repository as a merge, and the selective
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(b) Splitting the processing of many logs amongst
multiple agents allows us to build large EBN maps
much faster than with single-agent EBN, with no
loss in map quality.
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(c) Sharing information amongst multiple robots between
forays into the field allows for more robust localisation of
agents. We can also alleviate the stress of strict on-board
storage constraints by selectively deploying information
most relative to a specific foray or mission.

Fig. 3. We illustrate in (c) our complete version control framework for
fleetwide visual localisation, which allows agents to share expertise in a
changing world to the rest of the team. This is achieved by periodically
incorporating their sensory inputs, illustrated as a single step in (b), before
being dealt with a subset of the privileged map most relevant to the next
foray.

has downloaded a frame and tries to merge it back into the
server-side map. The server knows not to duplicate the frame.

The paths shown in Figure 2 are likewise identified by
UUIDs, which we state here not as an implementation detail
but as an essential emphasis of the utility each robot makes
of the experience map and how it may share such expertise
with the team.

IV. SYSTEM OVERVIEW
Figure 3 illustrates two strategies for the management

and integration of sensory data proffered asynchronously by
multiple agents, which may represent:
• Parallel EBN instances on a server, having split all

available logs into smaller groups.
• Several robots submitting to a central server while

embarking upon regular forays into the world.

To this end, in addition to the single-agent EBN core, we
require two generalised processing blocks:
• MERGE, which combines two EBN maps, detailed in

Section V-A.
• DOWNLOAD, which selects some portion of an EBN

map for deployment, some choices of implementation
for which are given in Section V-B.

The frequency of interaction for MERGE and DOWN-
LOAD is determined by either scheduling limitations on the
server, or mission goals directed at each agent.

Batch processing of data as in Figure 3(b) is advantageous
in that all EBN instances are independent, and completed
in parallel. MERGE takes as input a decimated frame-rate
impression of live camera imagery in the form of information
stored on database nodes, and as such is quicker than any
EBN instance. We are thus able to build maps much faster
than if we were to combine all logs sequentially, as in
single-agent EBN. As the server is growing an ever more
comprehensive representation of the environment, we expect
to ignore redundant information from each EBN instance.
Additionally, we can explore some portion of the full com-
binatorial space of the order in which logs are collected by
attempting different organisations for groups (randomly or
guided by design) to MERGE into the server.

Figure 3(c) provides an alternative scheme, which lends
itself well to a team of robots periodically docking to the
server in-between forays into the world. The team, via the
server, can share expertise through a DOWNLOAD just
prior to journeying out into the world again, which would
improve localisation performance at each foray and mitigate
the necessity to record unnecessary experiences. Indeed, we
can reduce storage requirements on the resource-constrained
team members by intelligently choosing which portions of
the server database to DOWNLOAD.

V. DATA SHARING POLICIES
We turn our attention now to specific choices of imple-

mentation for MERGE and DOWNLOAD. The resemblance
of the system to centralised software version control (for
example SVN [20]) is clear. MERGE and DOWNLOAD are
analogous to submitting a pull request and checking out a
revision of code. However, we should stress that the schemes
shown in Figure 3 are somewhat agnostic to the choice
of implementation for each operation. Indeed, since we are
“dreaming”, it will prove beneficial to set up the server to
make several attempts with different behaviour, so that the
final maps are the best that we can achieve.

A. MERGE
In accordance with the description of our system in Section

IV, the MERGE processing block incorporates a robot’s map,
Grobot, into the server, Gserver.

Gserver ← MERGE(Gserver,Grobot) (1)

When iterating through the database content submitted by
the agent, we require an elegant manner in which to mimic a
stream of live data. It is thus important to discover chains or
segments of frames that are connected linearly by egomotion
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Fig. 4. In our versioning framework, robots hand off sensory information
to the server in the form of an independently processed EBN graph (blue).
Robots can send database contents asynchronously to the server, which will
discover linear segments in the topology (s1 and s2). If these localise well
(dotted line), they are omitted (s1) from the privileged map (red), driven by
the natural behaviour of EBN localisation. If the segment does not localise
well (s2), this information is regarded as required, and it is included within
and connected to the server database (green).

in the Grobot database, which we detail in Algorithm 1 and
illustrate in Figure 4.

Here we maintain a lookup between timestamps discov-
ered on nodes (lines 1 to 2) at the termination of edges
taken from Grobot and segments (lines 3 to 4) of such
linearly connected timestamps (we discover small topometric
submaps, lines 5 to 13).

Algorithm 1 The database nodes have been amended with
motion Tk incremental between frames at times ti. We main-
tain a correspondence, C, between linearly connected (at
terminating timestamps T ) segments S of such egomotion.
Require: Tk, C = {T, S}
Ensure: C = {T, S}

1: tk−1 ← source-timestamp(Tk) . Correspond segment
2: tk ← target-timestamp(Tk)
3: sk−1 ← C(tk−1)
4: sk ← C(tk)
5: if sk−1 ∧ ¬sk then . Prepends segment
6: C ← add-to-segment(tk, sk−1)
7: else if ¬sk−1 ∧ sk then . Appends segment
8: C ← add-to-segment(tk−1, sk)
9: else if sk−1 ∧ sk then . Connects segments

10: C ← fuse-segments(sk−1, sk)
11: else if ¬(sk−1 ∧ sk) then . Novel segment
12: C ← new-segment(tk−1, tk)
13: end if

Merging Grobot and Gserver is then achieved by querying
the relevance of a discovered segment via:
• Initial seed estimate of location from FAB-MAP (see

Section III-B).
• Breadth-first searches in modest graph neighbourhoods

(see Section III-A).
• Stereo matching using VO.
Such that, while no data fusion of landmarks is taking

place, the relevance of discovered segments is measured by
the underlying localiser and as such the MERGE is not a
simple union of the two databases. Also note that MERGE
makes no attempt to incorporate a frame from Grobot that is
already in Gserver, through a simple database query of the
incoming node identifier, uk = uuid(k).

As the agent’s database content is effectively decimating
the live camera stream (EBN creation of database nodes
is triggered by some spatial separation), MERGE is much

quicker than EBN, allowing us to delegate map-building to
several independent agents and obtain large maps quickly.

B. Download
Once more adhering to the schematic in Figure 3, we

denote the operation of the DOWNLOAD processing block
as some selective dispensing of the server to an agent.

Grobot ← DOWNLOAD(Gserver) (2)

A good downloading policy is characterised by:
• An intelligent selection of a mission-specific subset of

the database content, without the exclusion of informa-
tion which is essential to robust localisation.

• Ensuring that the experience map maintains integrity,
which in a graph of nodes and edges corresponds to
avoiding the creation of disconnected subgraphs.

We now present several candidate policies.
1) Whole-database download (“copy”): In the simplest

case we faithfully copy each and every node in Gserver to
Grobot with no exclusions.

Gserver ← copy(Grobot) = Grobot (3)

We are now facilitating a sharing of expertise from agent
to agent between their forays into the world. However,
the Gserver may grow briskly in size beyond the storage
capabilities of a resource-constrained robot in the field, and
we now present two candidate policies for mitigating this.

2) Selection near the foray time of day (“tod”): A
simple strategy for selecting the most relevant portions of
Gserver involves excluding any database content outside of
a temporal window, Tw > 0, around the time at which the
mission commences, 0 < tforay < 1440 [min] (24 hour
modulus).

∀nserver ∈ Gserver

nrobot =

{
nserver, if |tforay − t(nserver)| ≤ Tw

∅, otherwise
(4)

In this, we are making the assumption that appearance
change is driven solely by the passage of time. This may
account fairly well for illumination effects, but will fail
on longer timescales in the face of seasonal and structural
variation. This approach also relies on wide scope in the data
available: experiences at all points during the day to cover
the space of possible mission times.

3) Discovering the most statistically relevant paths
(“paths”): We can promote this naı̈ve selection by time
alone by further considering patterns within the use that the
localiser makes of the map, and infer the set of nodes most
likely to be localised against together.

As discussed in Section III-A, the server database Gserver
is equipped with a record of successful localisations in the
form of path memory, a topology connecting nodes ni ∈
Gserver with paths Pj ∈ P .

In Figure 5, we illustrate a simple example of a DOWN-
LOAD strategy which discovers the most statistically rele-
vant paths for downloading, as a prior on the similarity in
the appearance of the environment that we might expect.



n1 n2 n3 n4 n5

n6 n7

n8

P1 P2 P3 P4

n1 1 1 1 1
n2 1 1 1 1
n3 1 0 0 1
n4 1 1 1 1
n5 1 1 1 0
n6 0 1 0 0
n7 0 1 0 1
n8 0 0 1 0

t1 t2 t3
P1 5 0 0
P2 4 2 0
P3 4 0 1
P4 4 1 0

PCM

PWM

P1
P2

P3

P4

t1 : G  {n1 . . . n5}
t2 : G  {G, n6, n7}
t3 : G  {G, n8}

M

t1 t2 t3
P1 0.29 0 0
P2 0.24 0.67 0
P3 0.24 0 1
P4 0.24 0.33 0

Fig. 5. Discovering co-occurrence in path memory. During normal mapping
activity (nodes added on 3 separate occasions), the EBN core records the
use it makes of database nodes in the form of some identified paths through
the topology. We can use a path weight matrix to recover the sequences of
nodes most statistically relevant to a particular mission time.

Just prior to DOWNLOAD, the server has been populated
by forays during operating periods of the agents driving
around the world

tk = {t | (k − 1)∆t ≤ t ≤ k∆t} (5)

Where in Figure 5 we have illustrated three such mapping
activities. We follow a simple counting procedure to keep
track of which paths are registered against all database nodes
and populate a path memory matrix, M , as

M(ni,Pj) =

{
1, if ni ∈ Pj

0, otherwise
(6)

Algorithm 2 transforms M to encode the co-occurrence
of paths by counting the total number of nodes (line 2) that
each path touches within time periods (line 1) in the epoch.
The transformation is inspired by representation of motifs in
biological sequences (such as genetic sentences) [21], and
we refer to it as the path count matrix, PCM (line 6).

We can inspect the statistical significance of a path at a
certain time of day by normalising PCM to obtain a path
weight matrix, PWM .

PWM(Pi, k) =
PCM(Pi, k)∑
Pi∈P PWM(Pi, k)

(7)

Thus, using Algorithm 3, a foray between times kstart to
kend (lines 1 to 6) can be furnished with a subset of Gserver
by choosing the most statistically relevant paths (line 10).

Selecting the most statistically relevant paths for download
just prior to a mission in this way is intuitive in that
paths tacitly represent the relationship between experiences
captured in the map, where (for example) nodes storing
sunny experience tend to be localised against during a single
foray, and likewise for other broad environmental categories.

Algorithm 2 Populating the path count matrix. We find
nodes, Nk, originating from imagery within discrete epochs.
If these nodes have been used in localisation along a partic-
ular path, Pi, we increment the usage of that path within the
epoch.
Require: K,Gserver,P, D
Ensure: PCM

1: for k = 1 . . .K do . Epochs
2: Nk ← find-nodes(Gserver, tk) . Epoch nodes
3: for nk ∈ Nk do
4: for Pi ∈ P do . Path memory
5: if M(nk,Pi) = 1 then
6: PCM(Pi, k)← PCM(Pi, k) + 1
7: end if
8: end for
9: end for

10: end for

Algorithm 3 Choosing the best p% paths to download before
a foray. We look for the most commonly used path UUIDs
within the mission times, kstart and kend. If data is limited,
it is possible to apply some buffer at either end of the mission
times, or simply use the earliest kmin and latest kend data
available. This may also prove useful when deploying the
robot with no known end time (live deployment).
Require: kstart, kend, PWM, p
Ensure: P∗

1: if kstart = ∅ or kstart < kmin then . Mission start
2: kstart ← kmin

3: end if
4: if kend = ∅ or kstart > kmax then . Mission end
5: kend ← kmax

6: end if
7: P∗ ← ∅
8: for k = kstart . . . kend do
9: Pk,∗ ← best-p(PWM(:, k)) . Top paths for epoch

10: P∗ ← {P∗,Pk,∗}
11: end for

VI. EXPERIMENTS
We present tests of our system on a dataset collected

in Summer 2013 by driving our Nissan Leaf RobotCar
around Begbroke Science Park in North Oxford, as shown in
Figure 6(a). The 700m loop was driven at regular intervals
at all times of day and night over the period of a month,
totalling 100km. It presents us with significant challenges in
appearance change, as shown in Figure 6(b). The imagery
is obtained from a Point Grey Bumblebee2 stereo camera
at resolution 384×512. We refer to this set of logs as
begbroke24hr. We divide the full set of logs into groups
representing input from a curated virtual team of 2 robots,
as further explained in Section VI-A

A. Statistical validation
We present statistically robust experimental results by

performing 5-fold cross-validation, involving:
• Dividing begbroke24hr into 5 groups.



(a) The outer loop at Beg-
broke Science Park in North
Oxford was driven at regular
intervals between August 6th

and September 5th (30 days) in
2013, totalling 100km of im-
agery, using a Point Grey Bum-
blebee2 stereo camera. © Open-
StreetMap contributors.

(b) The dataset presents challenging en-
vironmental change due to atmospheric
(from glaring sun to gloomy overcast),
lighting (at all times of day and night)
and structural (fluctuating arrangements
of traffic) effects.

Fig. 6. The begbroke24hr dataset and experimental setup.

• Mapping with 4 of the groups (the training sets) ei-
ther via single-agent EBN, or various instantiations of
“dreaming” policies, as presented in Sections IV and V.

• Localising in this map using the 5th group (test set).
We repeat this procedure 5 times (such that each group
of logs is used as the held-out set once), aggregating the
iterations to obtain the plots that we now present. This
approach ensures that there is no biased selection of logs
with related appearance that should localise well together.

B. Metrics for localisation robustness
In order to enumerate the advantage our system offers, we

require a metric for localisation robustness, a candidate for
which was first presented by McManus et al. [22]. We regard
localisation efficacy as the distance the robot (after becoming
lost) is likely to have to travel using dead-reckoning (VO in
our case) before reacquiring localisation, which we explore
as a cumulative distribution, P (X ≥ x). A good distribution
of this kind will rapidly dwindle to zero from a moderate
peak. Generally, one distribution is better than another when
it lies below it on a visual plot, unless it has a much longer
tail. To be clear, we understand our measure of success to be
represented by a comparison to the localisation performance
of EBN when presented sequentially with logs collected in
their natural order (single-agent EBN).

C. Building good maps quickly
In Figure 7, in a similar spirit to [23], we compare the

construction of maps using the merging system first shown in
Figure 3(b) against single-agent EBN. It is clear from Figure
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(a) Evolving size of server database. Our
merging strategy can build the map in
13120 seconds (3.6 hours), while single-
agent EBN requires 44690 seconds (12.4
hours) - a savings of 29.36%. Further-
more the final merged database size is
13665 nodes, compared with 20222 built
by traditional EBN (67.57%).
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(b) The merging strategy does not compro-
mise on map quality, offering localisation
robustness that is at least comparable to
single-agent EBN.

Fig. 7. Investigating distributing the building of an EBN database from all
logs in the cross-validation set (see Section VI-A) and merging intermediate
results for faster map construction, with no loss in the reliability of
localisation.

7(a) that the maps are built in a fraction of the traditional
time, specifically 29.36%.

The final Gserver node count is 67.572% of that gener-
ated by single-agent EBN. The asynchronous processes are
individually experiencing the world, but when the system
instigates a merge, we drive the incorporation of information
by the ability of the localiser, and no redundant information
is recorded where it is not needed.

This would be of little use if significant compromise was
made to map quality. Happily, Figure 7(b) shows that this is
not the case, as localisation robustness is commensurate. In
fact, the test set spent 21.97% of its foray not localised in the
map built with our merging strategy, compared with 32.03%
in the map built with single-agent EBN. One would expect
to localise at best as well as single-agent EBN, and no better.
However, our non-traditional layout will avoid the runaway
effect of one bad stereo match (corrupting the topometric
accuracy in graph neighbourhoods) that processing logs one
after another with single-agent EBN is susceptible to.

D. Leveraging visual experiences in a team
As a fleetwide experiment, a pair of robots (r1 and r2) each

embark on two forays into the world. Between the forays
(just after processing the 7th succession of stereo input, Log
7), they hand off to the server, and download the resulting
merged map.
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Fig. 8. Sharing and distributing maps between a pair of robots. The held-
out set is able to localise more reliably in the shared map (copy) than
in either of the per-robot maps that each robot would be limited to if
lacking knowledge of each other (r1 and r2). As the number of robots
in the experiment increases, the shared map quality should hug the vertical
axis more closely.

1) Sharing expertise: In Figure 8 we show the advantages
offered by our sharing scheme, limiting ourselves first to
downloading by the simple copy strategy of Section V-B.1.
It is strikingly evident on inspecting the distributions of
localisation failure that map quality in the case of sharing
expertise between these agents is better than if the robots
had no knowledge of each other and had built EBN maps
with only their own sensory input.

2) Distributing mission-specific maps: Figure 9 inves-
tigates the effect of excluding irrelevant server content as
proposed in Sections V-B.2 and V-B.3.

Figure 9(a) illustrates how we mitigate possibly strict
storage requirements. Selecting by time of day with a band
of 3 hours or 180 minutes around the current mission time
offers immediate respite, where each robot is required in
between forays (around Log 7) to respectively store only
81.77% and 79.57% of the nodes it would be required to hold
for a complete download (copy). Additional filtering by path,
choosing the top 50%, reduces the storage requirement even
further, as shown in Figure 9(a), where the savings becomes
74.56% and 66.57%, respectively.

As a sanity check, we show in Figure 9(c) that we are
not compromising the in-field localisation reliability of our
robots, despite deploying subsampled maps. There is only
a slight slump in localisation robustness towards the tails,
which is worth noting as the trade-off between localisation
and storage savings a system designer will have to make. We
see comparable reliability in Figure 9(c) as we have designed
policies which implement a canny selection of only content
relevant to the current mission (excluded database content
will not have aided localisation).

Finally, Figure 9(b) shows a comparison of the average
time spent localising at points during each foray, where it
is clear that subsampling the total map leads to improved
performance and lenience on the processing power required,
due to a kinder throughput to FAB-MAP relocalisation, the
bottleneck in EBN performance.

E. Building the best maps
Our framework allows for coarse but quick and useful

combinatorial optimisation of the order in which we create
EBN maps. We thus use this final experiment to ponder two
important issues:
• What magnitude is the effect of the order in which logs

are handed to EBN on the quality of representation?
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imposes monotonous growth throughout the
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Fig. 9. Investigating sharing and distributing maps between a pair of robots,
where small portions of the server’s comprehensive environment map are
intelligently selected and then downloaded to address resource constraints.

• Are cumulative distributions of localisation failure, as
we have used them, a good metric for map quality?

In Figure 10 we have combined 4 groups of 9 logs in
every possible order, totalling 4! = 24 candidate maps. We
show the quality of localising a test set in the resulting
maps. It is clear that the designer is in possession of a best
quality map for the choosing. This is attributed to a idealised
addition of the most surprising experiences in the map,
which immediately makes it more representative and better
for localising. The design choice depends on the distance
robots can reasonably travel on dead-reckoning alone, which
could be dictated by safety, quality of egomotion estimation
available, or frequency of localisation capable with the
available processing power.

It can be shown that the time savings we enjoy in exploring
the combination of k groups of stereo logs is
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Fig. 10. Our versioning framework, due to both the rapidity of merging
compared to single-agent EBN and the copying of independent intermediate
results not available in single-agent EBN, allows us to quickly (in 22.44%
of the time) explore a combinatorial space for the best order in which to
build maps. Each curve shown here is a cumulative failure distribution which
we use to judge the quality of the map built by that particular combination
of sensory input.

Csavings =
kTG + k!(k − 1)TM + k(k!− 1)TC

(k!(k − 1) + 1)TG + (k!− 1)TC
(8)

Where in our case there are k = 4 groups and TG =
10823[s] is the time for processing each group, TM =
1829[s] is the time to merge one map into another, and
TC = 27[s] is the time to copy some intermediate results for
reuse (all sampled from jobs submitted to our server). The
advantage of distributing EBN processing to asynchronous
processes becomes even more clear via this calculation, as
the copying of intermediate results for single-agent EBN is
limited to only the first group (subsequent groups depend
on the map built by the first group). Under our framework,
all intermediate (group) results can be copied, and we are
rapidly searching for the best map in Csavings = 22.44% of
the traditional time.

VII. CONCLUSION
We have presented a technique for gathering, processing,

distributing, and managing of experiences amongst asyn-
chronous processes, agents, or robots. We show how to use
a centralised version control style framework to assimilate
multiple experience maps, and issue only highly relevant
maps in between forays, through a medium that facilitates
sharing of expertise. The system is evaluated in a robust 5-
fold validation process across approximately 140 traverses of
a 700m route, totalling 100km of driving in North Oxford.
We are thus able to produce maps in a fraction of the time
required by single-agent EBN and deploy fractionally sized
maps with no significant loss in localisation robustness, as
well as leverage expertise in a team with heterogeneous
localisation capability. This system is thus particularly well-
suited to teams of miscellaneous, resource-constrained robots
engaging in regular missions into a changing world.
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