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ABSTRACT
In which representation is speech most sparse? Time-scale?
Time-frequency? Which window generator and length should
be used to create the sparsest decomposition? To answer
these questions, we propose the Gini index, which is twice
the area between the Lorenz curve and the 45 degree line,
as a measure of signal sparsity. The Gini index, introduced
in 1912, is one of the most common measures of income
or wealth distribution and is used to measure the inequity,
or sparseness, of wealth distribution. Numerous decom-
positions of the speech signals in the TIMIT database are
used to determine the most sparse standard representation
for speech.

1. INTRODUCTION

Sparse signal representations lead to efficient and robust
methods for compression, detection, denoising, and signal
separation [1, 2]. However, there is no standard practical
measure of sparsity. In a strict sense, sparsity means that
most signal components are zero. In a practical sense, spar-
sity means that most signal components are relatively small,
and there exists no universal quantitative measurement of
this concept.

Sparsity has garnered recent interest in the blind source
separation community. In this domain, the goal is, given
matrixY of the form,

Y = AX + N (1)

determine matricesX, A, andN which minimize,

‖Y −AX‖F + λ‖X‖G (2)

for matrix cost functions‖ ·‖F and‖ ·‖G and regularization
parameterλ. Often,‖X‖G =

∑
i G(xi) wherexi is theith

column ofX andG(x) measures the sparseness of vector
x. From the infinite number of possible solutions, we prefer
solutions with sparse representations because the original
signals themselves have sparse representations.

Often,G(x) is of the form,

G(x) =
N∑

j=0

g(xj) (3)

wherexj , j = 1, . . . , N are theN components of vectorx.
Some commonly usedG(x), investigated in [2], include:

l0 : ‖x‖0 = #{j, xj 6= 0}/N
l0ε : ‖x‖0,ε = #{j, |xj | ≥ ε}/N

lp : ‖x‖p = (
∑

j

|xj |p)1/p

tanha,b :
∑

j

tanh
(
|axj |b

)
log :

∑
j

log
(
1 + x2

j

)
u0

θ : min
i,j

(x(i) − x(j)) s.t.
i− j

N
≥ θ & x(j) ≤ 0 ≤ x(i)

for ordered data,x(1) ≤ x(2) ≤ · · · ≤ x(N)

Plots of the individual measures of sparseness listed above
are shown in Figure 1.
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Fig. 1. Component sparsity contributions as a function of
component amplitude.

Note, for all these measures, the more sparse the signal,
the closer to zero its sparseness measure. For example, the
l0 norm penalizes any non-zero component equally with a
contribution of1/N to the sparseness measure whereN is



the number of components.l0ε is often used when noise is
present, as the noise results in very few components being
truly zero, despite the fact the representation is still sparse
in an intuitive sense. As optimization usingl0ε is difficult be-
cause the gradient yields no information,lp is often used in
its place, withp < 1. tanha,b is sometimes used in place of
lp, p < 1, because it is limited to the range(0, 1) and better
modelsl0 andl0ε in this respect. The fact thatlp, p < 1 and
tanha,b are concave enforces sparsity. That is, a representa-
tion is more sparse if we have one large component, rather
than dividing up the large component into two smaller ones.
The log measure is concave outside some range, but con-
vex near the origin, which in effect spreads the small com-
ponents. The last measureu0

θ measures the smallest range
around the origin which contains are certain percentage of
the data.

All of these measures are somewhat arbitrary and most
depend heavily on the choice of parameter settings with the
exception of thel0 norm. Thel0 norm however is not prac-
tical in the presence of noise. So we endeavor to find a mea-
sure of sparseness which has no parameters and can handle
noise. It turns out that economists interested in the study of
the distribution of wealth have such a measure, called the
Gini index, which we formally define in the next section.
For now, we will focus on some desirable properties that a
sparse measure should have. The economist Dalton in [3]
cited four properties that a sparse measure should satisfy.
The four properties are (as in [4]):

• (Dalton’s 1st Law) Robin Hood decreases sparsity.
Stealing from the rich and giving to the poor, de-
creases the inequity of wealth distribution (assuming
you don’t make the rich poor and the poor rich).

• (Dalton’s modified 2nd Law) Sparsity is scale invari-
ant. Multiplying wealth by a constant factor does not
alter the effective wealth distribution.

• (Dalton’s 3rd Law) Adding a constant decreases spar-
sity. Give everyone a trillion dollars and the small
differences in overall wealth are then negligible.

• (Dalton’s 4th Law) Sparsity is invariant under cloning.
If you have a twin population with identical wealth
distribution, the sparsity of wealth in one population
is the same for the combination of the two.

We argue that all these principles seem reasonable from a
sparse signal representation point of view, and we add two
desired properties to this list:

• (Proposal 1) Bill Gates increases sparsity. As one in-
dividual becomes infinitely wealthy, the wealth distri-
bution becomes as sparse as possible.

• (Proposal 2) Babies increase sparsity. Adding indi-
viduals with zero wealth to a population increases the
sparseness of the distribution of wealth.

It can be shown that all are satisfied by the Gini index, and
this is not the case for any of the previously discussed mea-
sures. All of these six principles can be thought of in terms
of components of a representation instead of individuals in
a population and component strength (magnitude) in place
of individual wealth.

The rest of the paper is as follows. We discuss the for-
mula for the Lorenz curves and the Gini index in Section 2
and perform experiments on speech signals taken from the
TIMIT database in Section 3 to determine in which repre-
sentation is speech most sparse. We present conclusions in
Section 4.

2. LORENZ CURVES AND THE GINI INDEX

Given data,x = {x1, x2, . . . xN}, we order the data ac-
cording to magnitude,|x(1)| ≤ |x(2)| ≤ · · · ≤ |x(N)|. The
Lorenz curve, originally defined in [5], is the function with
support(0, 1), which is piecewise linear withN + 1 points
defined,

L

(
i

N

)
=

i∑
j=1

|x(i)|∑N
k=1 |xk|

, for i = 0, . . . , N (4)

Note,L(0) = 0 andL(1) = 1.
The Gini index, originally proposed (in English) in 1921

in [6], is the twice the area between the Lorenz curve and
the 45 degree line. The area underneath the Lorenz curve is,

A(x) =
1

2N

N∑
n=1

(
L

(
n− 1

N

)
+ L

( n

N

))
(5)

The Gini index is then simply,

G(x) = 1− 2A(x). (6)

Figure 2 shows the Lorenz curve and Gini index for four
simple vectors. Note that the distribution in which all indi-
viduals have equal wealth is the least sparse and the distribu-
tion in which all the wealth is concentrated in one individual
is the most sparse.

G(x) has many nice properties:

• A representation with equal wealth distribution has
G(x) = 0, no sparsity.

• (Dalton’s 1st & 2nd Law)G(x) satisfies the Robin
Hood Principle and is scale invariant.

• (Dalton’s 3rd Law)G(x + k) → 0 as scalerk →∞ .



Fig. 2. Lorenz curve for[0 1 2 10 10] (top left), [0 0 0 0 1]
(top right),[1 1 1 1 1] (bottom left), and[0 1 2 3 4] (bottom
right). The Gini index is twice the lightly shaded/yellow
area. The Gini indexes are 0.5043, 0.8, 0.0, and 0.4, respec-
tively.

• (Dalton’s 4th Law)G ({x1, x2, . . . xN}) is identical
to
G ({x1, x1, x2, x2, . . . , xN , xN}).

• (Proposal 1) As one component of a representation
goes to infinity,G(x) → 1.

• (Proposal 2) If an infinite number of zero components
are added to a vector,G(x) → 1.

3. THE GINI INDEX OF SPEECH

In this section we present results of using the Gini index to
measure the sparsity in the time-frequency and time-scale
domains of thirty speech signals taken from the TIMIT data-
base. For each speech file, the TIMIT annotations were
used to determine the starting point of the speech and the
silence before that point was removed. Approximately one
second of speech (214 = 16384 samples) was analyzed for
each file and each decomposition consisted of 16384 com-
ponents. That is, adjacent windows were used in the time-
frequency case and no extension technique was used for
the wavelet decompositions. The sampling rate of the sig-
nals was 16kHz and they were transformed into the time-
frequency and time-scale domain using various windows
and wavelet filters. For each decomposition, the Gini in-
dex of the squared magnitude of the components was mea-
sured. In each case, the decomposition consisted of Each
data point presented in the figures in this section represents
the average Gini index over the thirty speech files.

3.1. Time-frequency

For the time-frequency representations, we used the win-
dowed Fourier transform using each windows depicted in
Figure 3 for window lengths ={20, 21, . . . , 214}. The re-
sults of the tests are shown in Figure 4. The figure shows
that speech is most sparse in the time-frequency domain
when using a Hann, Hamming, or triangular window shape
of length approximately 1024 samples, which corresponds
to 64 ms. Example Lorenz curves for the time domain and
a time-frequency domain representation of a sample speech
file are shown in Figure 5.
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Fig. 3. Window shape comparison.
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Fig. 4. Gini index as a function of window size for com-
mon window types. In the time-frequency domain, speech
is most sparse when using a Hann, Hamming, or triangu-
lar window shape of length approximately 1024 samples,
which corresponds to 64 ms.



Fig. 5. Lorenz curve for speech in the time domain (darker
shade/blue) and time-frequency domain (lighter shade/red).
Gini index of 0.90 (time-domain) and 0.97 for TF domain
(window length 64 ms).

3.2. Time-scale

In order to compare the time-frequency methods with the
time-scale methods, care was taken to ensure that the spar-
sity measurements for the time-scale methods were not bi-
ased by the different data border treatment methods. For
example, standard wavelet decomposition methods extend
the data with zeros, symmetrically, with zeroth (or first)
order extension, or periodically. In order to avoid depen-
dence of the results on extension technique, we chose to
instead assume that we had an infinitely long speech signal
and were looking at a decomposition snapshot at a given
period in time. Thus, components at lower levels of the de-
composition depend on data coming from outside the one
second analysis window considered in the time-frequency
tests. This is an unavoidable consequence when comparing
time-frequency and time-scale methods. Either the results
will depend on the extension technique, or, the time-scale
method must be allowed to see more data than the time-
frequency method in order to produce the same number of
decomposition coefficients. We chose the latter for this pa-
per, which limits the depth of the decomposition that we can
perform because the original signals from the TIMIT data-
base contain under ten seconds of data for each file.

The results of performing the decomposition using Dau-
bechies wavelets of length2, 4, . . . , 12 for various decom-
position levels are shown in Figures 6, 7, and 8. A full
wavelet packet decomposition, corresponding to a binary
tree of depthL, would haveA(L) = A(L− 1)2 + 1, where
A(1) = 1, possible lossless representations. This number
grows quite rapidly (it is asymptotic toc2n

, c ≈ 1.226);
A(1) = 1, A(2) = 2, A(3) = 5, A(4) = 26, A(5) =
677, A(6) = 458330, A(7) = 210066388901, . . ., see se-
quence A003095 in [7]. Determining the sparsest binary

tree decomposition from theA(L) possible decompositions
is thus computationally not feasible. Thus, we measured
the Gini index of three simple decompositions (Example
decompositions for these three schemes are depicted in Fig-
ure 9):

• the standard wavelet decomposition which corresponds
to applying the low-pass and high-pass filter to the
low-pass output at the previous level,

• the wavelet packet decomposition (all the leaves) at a
given level,

• the decomposition arising from a greedy algorithm
which starts at the leaves and chooses the sparser of
the two leaves or the parent for each pair of leaves
at the deepest level, replaces the parent decomposi-
tion with the winning result in each case, repeats the
process one level higher until reaching the top node.

Figure 6 shows that for the standard wavelet decomposi-
tion, the sparsity increases as the filter length and decom-
position depth increases. However, it plateaus for level≥ 4
and filter length≥ 6 at a Gini index≈ 0.96, so there is
no justification from a sparsity standpoint for using longer
filters or more levels of decomposition, as these require ad-
ditional computation. Figure 7 shows that speech is most
sparse at level 8 for all the filter lengths tested when consid-
ering all the leaves at a given level. Figure 8 shows that a
selective decomposition increases the sparsity until level 8,
where it levels off. A comparison of the three composition
methods for the Daubechies filter of length 12 is shown in
Figure 10. From the figure, we conclude that there is not
much to be gained by using the greedy algorithm as the per-
formance of the level method obtains a Gini near the max-
imum value obtained and is less computationally intensive.
Tests on coiflets and symlets resulted in similar conclusions
with slightly inferior results.

4. COMPARISON AND CONCLUSIONS

Comparing the results of the time-frequency and time-scale
sparsity measurements, we come to the conclusion that speech
is slightly more sparse in the time-frequency domain. How-
ever, far more important than the choice of domain is the
choice of window length (or filter length/level decomposi-
tion, in the time-scale case). For appropriate choices, con-
tinuous speech is more than97.5% sparse when using the
Gini index as a measure of sparseness.

http://www.research.att.com/projects/OEIS?Anum=003095
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Fig. 6. Sparsity for standard wavelet decomposition using
Daubechies wavelets of length2, 4, 6, 8, 10, 12, 14 and de-
composition level 1 through 12.
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Fig. 7. Sparsity for wavelet packet decomposition using
Daubechies wavelets of length2, 4, 6, 8, 10, 12, 14 at de-
composition level 1 through 12.
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Fig. 8. Sparsity for wavelet packet decomposition using
Daubechies wavelets of length2, 4, 6, 8, 10, 12, 14 and de-
composition level 3 through 13. Binary tree selection using
greedy selection method.

Fig. 9. The simple wavelet packet decompositions.
Blue/solid line shows the standard wavelet decomposition
for level 3, the red/thick line shows the level decomposition
for level 2, and the green/dashed line shows one possible
greedy decomposition for level 3.
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Fig. 10. Comparison of Gini index for decomposition tech-
niques for Daubechies filter length 12.
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