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ABSTRACT
Particle Filter-based Source Localisation algorithmaratit to track
the position of a sound source - a person speaking in a roosedba
on the current data from a distributed microphone array dlsase
all previous data up to that point. This paper introduces #imu
target methodology for acoustic source tracking. The nukiho
ogy is based upon the Track Before Detect (TBD) frameworle Th
algorithm also implicitly evaluates the source activityngsa vari-
able appended to the state vector. Examples of typical itrgck
performance are given using a set of real speech recordiitgs w
two sources active simultaneously.

1. INTRODUCTION

Localisation and tracking of speech sources has become-an in
creasingly active area of research. This straightforwaadlpm

is complicated by the existence of background noise anabexe
ation. Furthermore speech by its nature is highly nonestatiy -
alternating between periods of high activity during a seo¢eand
silence. While algorithms have been presented to track glesin
source, [1], extensions to the multi target environmentehiaad
limited success [2].

A novel algorithm for single source tracking will be presssht
using the Track Before Detect (TBD) methodology within atpar
cle filtering framework. Using TBD allows a significant prapion
of the computation associated with the evaluation of thaliliood
function to be avoided. An extension of the framework to krac
ing multiple sources simultaneously is then illustrate®action
4. By using the TBD methodology this algorithm avoids thechee
to associate the measurements to a particular source - d§s
great complication in Multi Target Tracking (MTT) [3].

2. ACOUSTIC SOURCE TRACKING

This paper concerns itself with the problem of tracking teation
of moving speech source(s) in tleY-plane. We consideiN,,
microphones in a typically noisy and reverberant room usivggy
basic framework initially introduced by [4].

Assuming a batch of synchronised datalofsamples from
each sensor is available at tiheXy, = [x1(k), ..., X, (")),
we will use alocalisationfunction to make a transformation be-
tween the audio frame data and a location estiméate £(Xy).

Localisation measurement models are divided into two gsoup
- those that provide indirect measurements from each mcnog
or microphone pair (such as Generalised Cross Correlatibith
are then combined to give an overall location estimate aogeth

* This work was by Microsoft Research through the European PhD
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that use the entire microphone data frame to make a singheagst
such as the Steered Beamformer (SBF). We will focus on ubiag t
SBF as the measurement function for this paper.

2.1. Measurement Function: Steered Beamfor mer

The Steered Beamformer (SBF) value is a measure of how l&kely
full audio frame originated from a specific location. For tonity

we will maintain the same notation used in [5] (Equation 2heT
SBF steered to the physical location= [z, y] will be denoted
S(1). It is noted that computation of the SBF represents a large
proportion of the computational effort for any particleditwhich
utilises it.

2.2. Observationsfrom real data

A number of observations are detailed here regarding thiemper
mance of the SBF - based on real recorded audio. Space loniat
do not permit a technical discussion however. Firstly thethvpf
SBF peaks are determined by the frequencies used to cal¢héat
SBF. Because speech’s maximum frequency is about 4000Hz the
overall peak will typically have a width of about 10cm (abdkie
noise floor) as discussed in [1].

As previously observed, [5], speech is a highly non-statipn
signal meaning that successive frames may give clear diSBF
peaks while others may be useless. We tackle this problem wit
an activity detector in Section 3.2.3. Finally when two s@srare
active simultaneously, the more active source is typiadiminant
in the resultant SBF trace. Clear SBF peaks from each souece a
generally observed in the momentary silent gaps betweertliee
source’s words and sentences.

3. TRACKING FRAMEWORK
3.1. Bayesian Filteringand SMC

We will define the source state vector at tifé be

)

wherezx; andij are position and velocity of the source, respec-
tively, in the X'-direction and similarly for they-direction. The
parameter\;, a source activity indicator, will be introduced in
Section 3.2.3. Solution of the tracking problem will requthe
estimation of the source position portion of this vectqt:r, yx)

at each time step using the Chapman-Kolmogorov equations:
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This non-linear and non-Gaussian problem has no closed form

solution. An alternative approach is Sequential Monte €g&MC)
which attempts to carry out the above integrations on a laege
of weighted discrete samples, also known as particles,hwtan
then be used to estimate the posterior density. A generavieve
of the principles and background to SMC,aarticle filteringas it
is generally known, can be found in [6]. In the following sSens
the various components that are required to solve this enokill
be introduced.

Source Dynamical Model: We will use the Langevin dynam-
ical model introduced by Vermaak [4] and retained by Ward et
al. [1]. The parameter values chosen will Be= 6Hz and
v = 0.6m/sec. In Section 4.2.1 the tracking algorithm is mod-

Equation 3 requires that the SBF values be normally dig&itbu
with known mean and variance statistics. As a result a nuealh
mapping is necessary to adjust the highly varying SBF valoes
such a distribution.

3.2.2. Magnitude Mapping

As noted in Section 3.2.1 the measurement function is based o
likelihood function calculated for a set of pixels ratheanha con-
tinuous function. As such the measurement related to acpéati
particle, positioned at a continuous locatian,, yx ), is that of the
point at the centre of theixel grid in which it lies.

From a study of the SBF function, it was noted that for a par-
ticular environment and experimental setup the SBF willileith

ified to track more than one source using a repulsive force as aa typical distribution of noise values when no speech isvacti

modification to this dynamical model.

3.2. Track Before Detect

Classical approaches to tracking typically require aridhitep
to first extract a small number of position measurements fiwm

Meanwhile SBF measurements from the correct source lotatio
will typically be above this distribution when the sourceidive.
By tuning the likelihood function to give low likelihoods f&BF
values within the noise distribution and larger likeliheddr large
values it is possible to isolate the useful measurementsouita

raw sensor output (such as raw radar scans) using sensait sign strict thresholding. To do this we apply a nonlinear mappothe

processing. However this step usually requires a threstefato-
cess which can lead to a loss of information. Also to caleulat
this function at a sufficient density of points so as guamaitite
observation of the source peak, using the full frequencgeaof
interest, is computationally prohibitive as noted by [1,A$ men-
tioned in Section 2.2 the SBF function peak widths are rdltte
the range of frequencies used to calculate the SBF. It isesigd
that a grid resolution of 10cm is sufficient to observe thearij
of peaks.

In [7] the authors illustrated a method which made use of a hy-
brid particle filter using both grid points and free movingtjudes

SBF values as follows:

z=9(8;8,05) 4
where® is a normal cumulative distribution function with mean
S and variancer? applied to an SBF intensity &§. These pa-
rameters are calibrated in advance or online so that its y&an
lies between the mean of the noise distribution and magaitid
typical source peaks

The measurements are now mapped onto the réngg0, 1)
and we will now set the intensity valué, to unity. As the mea-

to track a moving source. However there appears to be noabvio surement range is now truncated itis necessary to introaltrem-
way to extend this method to MTT as there isn't a measurement cz_atlo_n Cpnstant to normalise the_ range. Trunc_atlon c_)f tt_renab
set which can be assigned to either source (as the measuremeristributionN(S(1),0, o3) at the limits of(0, 1) will require iden-

function is only evaluated at the actual particle locatjo al-
ternative approach is now introduced from the TBD litereti@].

3.2.1. TBD Likelihood

A Bayesian TBD particle filter provides an approximation fte t
target state directly from the pixel array data. It is asstirinat
at each time steg, a pixel grid of 1J resolution cells is read si-
multaneously and that an individual pixgl 7) has an intensity of
Readers are directed to Salmond and Birch, [8], in which the

TBD framework is built up. Briefly the background noise is mod
elled as a zero mean Gaussian with variance %ffor all pixels
(4,7) - pn (zij|z, y) = N(2ij;0,0%). If however the source is lo-
cated within the grid pixel the pixel likelihood will h&s 4+~ (235 |z, y)
= N(zij;I,0%) wherel is the intensity due to the source. The
resultant likelihood ratio will then be

). @

= exp<

To apply this method to the Acoustic Source Tracking (ASDjopr
lem, it is first necessary to recognise that the initial aggtion of
TBD - that only the single SBF pixel in which the source is lech
is influenced by the source’s speech - is not true. The SBFagac
tinuous function and can be evaluated at any continuousidoca

—I(I — 2Zij)

2
20%

_ ps+n(zijlz,y)

l(zij|lz,y) =
(i1, v) pn (25T, y)

tical truncation constants as follows = cs+n =
2 (erf((\/fa?;)*l))*l. As the likelihood ratio for a pixel is the
ratio of these two likelihoods (see [8]), it is unaltered.

The final likelihood ratio can be stated as follows

ex |:2zij—1:| for iA —z| < A/2
(zijle,y) =3 FPL2e3 ] andjja—yl<a2 (5)
1 otherwise

3.2.3. Activity Indicator Variable

As Lehmann and Johansson discussed, [5], the temporatigrdis
tinuous nature of speech must be recognised to allow for a com
plete AST system. However instead of measuring sourceigyctiv
indirectly using a Voice Activity Detector (VAD), we propeso
detect activity directly from the SBF function itself. It Walso
allow us to track the activity of multiple sources simultansly -
something that would not be possible with a speech energtsct
detector.

Firstly we add an activity indicator variablg, € {0,1}, to
the state vector. This variable will change according to akda
vian birth/death process with pre-determined probabgifis sug-
gested in [8]. We choose the probability of birfhg = 0.3, and
the probability of deathPp = 0.1. The probability of activity of
the source will simply be the proportion of active particles

However the shape of the SBF is defined by the frequencies used

to calculate it and hence a grid of density of 10cm is sufficten
observe all promising peaks.

1The choice of a CDF isot intrinsic to this algorithm. A similarly
shaped function would be sufficient.



Inactive particles drift via the dynamical model with thieel
lihood ratio set to unity. The final likelihood weighting fction
will become

forA=1
andjiA —z| < A/2
and|jA —y| < A/2

otherwise
4. MULTI TARGET TRACKING USING TBD ©)

Multi-target TBD is a relatively new extension of the TBD rhed-
ology, [9]. According to the TBD methodology it is assumedb&o
only possible for a source to influence pixels in which it isdted
or a region surrounding the true location if smearing hasioed
due to the sensor. Hence as suggested by [9], we will congider
sources to behave independently when widely separatedkiiiga
in this scenario will be identical to the single source cas8éc-
tion 3.2.1. Alternatively when sources are closely spacgin
likelihood will be considered. The transition between théso
states is explained in Section 4.2.2. Two sour@asinot separate
or coalesce of course. For this reason we will introduce acgsu
to-source repulsive effect to preclude this behaviour.
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4.1. Digoaint tracking of Multiple Sources

Consider the case of two sources that have a large separa@tien
sources may be considered to be independent as in the singge t
scenario. A state vector for the sourcat time framek is

(@)

with an associated weighting;. The generic dynamical model
will again be used as the transition prior.

Because the TBD method uses only pixels co-located with this
source to generate a likelihood function, we can again wessith
gle source methodology. As a result, the likelihood raticsfmurce
7 will be identical to the single source in Equation 6 and theigpia
weightswy, o< g

E S -8 E .S E
ark = (T, Tk, Yk, Uk, Ak)

4.2. Joint Tracking of Multiple Sources
Now instead consider a joint state vector for two sourceisregk:

ar = (o, 0ap) ®)
ar = (T1,y1, 81,91, A0) 9)
ap = (T2,Y2, 82,92, A1) (10)

with a single associated weighting,. As in the case of joint
source tracking, the individual sources will be propagatecbrd-
ing to the dynamical model. However we will modify the model
to disallow two speech sources to coalesce.

4.2.1. Source Repulsion Mechanism

Consider two source particles; the distance between edtbevi
di2 = ||(z1,y1), (x2,y2)| and the angle between them will sim-
ply be 61> = Z{(z1,y1), (z2,y2)}, as illustrated in Figure 1.
We shall propose that beyond a certain distaage, > drep, the
sources are neither attracted to one another nor repulsiead- - s
ply moving independently with the usual Langevin motion miod
from Section 3. However when sources become closer than this
di2 < drep, a repulsive effect will force them apart. This force is

2This paper will concern itself only with a two source scenarihe
extension to three or more sources is straightforward afide/published
in future publications.

modelled as an accelerating force applied in the oppogiéetiton
of 612 - much like a pair of polar equal magnets. A simple squared
function works satisfactorily

arep(d12 - drep)2
0

if diz < drep

otherwise 11

Feslon) = {

wherearep anddyep are constants chosen empirically to give rea-
sonable behaviour, as illustrated in Figure 1. For the foatce,
this force is then projected into th& and )’ direction to give
Frépx(ar) and Frgp (v ). Meanwhile the force applied to the sec-
ond source (for ther-direction component) is the equal opposite
force Fapx(ax) = —Frepx(a), With a similar force for the-
direction. See Figure 1 for a graphical illustration of #aésrces.
These projected forced are added to the original dynamiocdietn
as follows (in this case for th&-coordinate of source):

(12)
(13)

1’2 amii—l +ber +F1rsep,m(ak)

xy zy_1 +dTzy,.
Finally the likelihood ratio for each source positiofiasy, ), is
again based on the SBF image pixel as in Equation 6. Assum-
ing pixel-to-pixel independence and that the sources atemo
positional, the product of the two likelihood ratios is usedjive

an overall likelihood ratig/(a) = T2, d(af).

8
1
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Figure 1: lllustration of repulsion effect: as source safian,d;»,
falls below the thresholdiyep, the force becomes more and more
significant. The decomposition of the resultant force isashon
the right.

4.2.2. Transition between states
The decision to transition between the joint and disjoirtipke
filters is based on the MMSE estimate of the source particids a
their variances. While other estimators, such as KL Divecge
might have been tried this method has proven to be sufficient i
practice. The decision is as follows

if di2,mmse < dinres
or (di2,mmse — o1 — 02) < Othres
otherwise

I. (14)

0

wherel, is the state decision indicator aad ando» are the vari-
ances of the two particle cluster positions.

5. AUDIO EXPERIMENTS

The recording environment was a typical office room, meaguri
roughly 7m x 7m. Twelve microphones were set up around the
centre of the room. The positions of the microphones ars-illu
trated as circles in Figure 3. Accurate ground-truth |aoeifor
the source and the microphones was provided via a commercial
camera-based motion capture system. The source used wats a co
puter loudspeaker transmitting typical conversationaksp.

Single Target: Figure 2 illustrates the performance for a small
portion of single source tracking. The filter estimafésand
positions quite correctly. Note how the uncertainty of resties



Source|| é(m) MSTD(m) TLP (%) =
Example 1 - 32sec of audio
1 0.110 0.076 2
2 0.114 0.118 10

Table 1: lllustrative Results for the SBF TBD particle filtesick-
ing two sources for the examples in Section 3. Number of gladi 05
used was 1000. Average algorithm runtime was 92.14sec. 4 o

05

Y~direction [m] -
°

grow during sections of speaker inactivity i.e. silence.e Ht-

tivity detector (top-right plot) measures this activityetitly from ,2: . : .

the particle filter output. As a result it switches betweenrse EEE T o . P

activity and inactivity more regularly than a simple Voicet#ity Figure 3: Example showing two sources moving in a room, which

Detector. was used to test the performance of the algorithm. An exaofple
Space limitations preclude a thorough comparison of thie var  the tracking performance is overlayed on each plot. Uniceyta

ous single target tracking algorithms such as the GCC-lzeseid ellipses are shown every 100 frames.

cle filter, [4], and various SBF-based particle filters, [Hibwever
experiments carried out by the authors have shown that e pr bility without an increase in the computational effort. #éemance

posed algorithm gives similar performance for mean e#cand for two source examples was seen to be similar to single sourc
the percentage of tracks which fail completely (TLP, as aixgd ASL algorithms. Further testing with more challenging dses

in [1]) with typically a lower mean standard deviation of terti- is necessary to evaluate the method’s full performancebilitya

cle cluster (MSTD). The caveat being that the number of gladi Future Work: A consequence of the TBD algorithm is that
used for the TBD version was 1000 compared to 100 for the other likelihoods are calculated for every pixel which containgaati-
methods giving increased stability. It is anticipated tiwat SBF- cle. As the cluster size increases during silence, comiputatill
TBD will comfortably run realtime on a typical modern comeut increase as more pixel values are evaluated. This can betedt
with thousands of particles. by halting a particle track after extended silence. Furtieee an

algorithm module which allows for the initiation and rembue#
source tracks has yet to be proposed.
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