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Acoustic Source Localisation and Tracking using
Track Before Detect

Maurice F FallonMember, IEEEand Simon GodsillMember, IEEE

Abstract—Particle Filter-based Acoustic Source Localisation synthetic environments [5], to tracking in real and chaiieg
algorithms attempt to track the position of a sound source — 0e  environments [6]. An extension has also been proposed which
or more people speaking in a room — based on the current data  ickly alternates between tracking two speakers takim pa
from a microphone array as well as all previous data up to that . . . .
point. This paper first discusses some of the inherent behawiral n "f‘ _conversatlon (7], while _another estimates Qverall spee
traits of the Steered Beamformer localisation function. Umg activity and uses these estimates to more reliably track the
conclusions drawn from that study, a multi-target methodobgy speaker during speech silence [8].
for acoustic source tracking based on the Track Before Detec While significant progress has been made, some of the
(TBD) framework is introduced. The algorithm also implicitly properties of the underlying localisation function have yet

evaluates source activity using a variable appended to the b licitl ised and dated. M if
state vector. Using the TBD methodology avoids the need to een explicilly recognised and accommodated. More specit-

identify a set of source measurements and also allows for aically, a disproportionate amount of algorithm computatio
vast increase in the number of particles used for a comparitie is often devoted to the raw evaluation of the localisation

computational load which results in increased tracking staility  function for particles located very close to one anothetk(ini
in challenging recording environments. An evaluation of tacking  fractions of a centimetre) despite the frequency content of
performance is given using a set of real speech recordings thi the incoming signals precluding the estimation of the fiomct
two simultaneously active speech sources. -~ et e
to such precision. The effect of this is that to maintain +eal

time operation of the algorithm, either fewer particles aren
computational power must be used.

In the following paper we propose a novel algorithm which
[. INTRODUCTION utilises the Track Before Detect (TBD) methodology to more

OCALISATION and tracking of speech sources _evenly distribute computation. This algorithm allows us to
L known as Acoustic Source Tracking (AST) or Localisautilise a much larger particle set, which results in a moablst
tion — has become an increasingly active area of researth wierformance. o _
applications in the fields of video conferencing and speech.The proposed method wildirectly model speaker activ-
The aim is to use an array of distributed microphones, with A% from the localisation function (the Steered Beamforjner
specific arrangement, to track a speaking person as they my{out recourse to typical Voice Activity Detection (VAD)
around a room based on the path delays between the so@@@rithms (which are an indirect measure of the activity of
and microphones as determined from the sound recordingdhg localisation functions). This will address the highlyna

Index Terms—Tracking Filters, Sequential Estimation, Particle
Filtering, Acoustic Source Localisation, Multi-target Tracking.

the microphones. stationary nature of speech; facilitating stable and séali
Tracking speech sources is, however, complicated by sevet@urce tracking during speech inactivity.
factors After a brief overview of the Sequential Monte Carlo

framework (commonly referred to as Particle Filtering) and
. the models we are using in Section Il, the results of a series
2) other active sound sources . . .
. . . of experiments which study the behaviour of speech and a
3) reverberation of the source signal itself L .
] ] common localisation function, the Steered Beamformer, are
which leads to a complex data processing problem. Fycussed in Section Il

thermore speech is, by its nature, highly non-stationary - ygjng these experiments as motivation, a novel likelihood,
alternating between periods of high activity during annattee using the TBD-based methodology, is then presented in Sec-

and silence. _ _ o tion IV. An extension of this method allows for a straightfor
We will be using a particle filtering-based approach tg;,,q multi-target tracking (Section V).

address this problem [1], [2], [3], [4]. This approach has ginglly Sections VI and VII present a series of illustrative

advanced recently from tracking single-source recordings 504 comparative tracking results for both single source and
two source tracking.

1) background noise due to the environment
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direction. The parametex;, a source activity indicator, will where F,, = N(0,1). A suitable choice of parameter values
be introduced in Section IV-C. The solution of the trackindpr 3, andwv, will allow us to simulate realistic human motion.
problem will require the estimation of the source position However in subsequent sections the tracking algorithm will
portion of this vector(zy, yx), at each time step. be extended to track more than one source and to this end
The generic tracking problem requires recursive estimatia modification will be introduced to the dynamical model, in
of the posterior filtering distributiom(ax|Z1.1.), using Bayes’ Section V-C, which adds a repulsive force to a pair of sources

Theorem as follows should they drift close to one another.
plak|Zik—1) = /p(ak|ak71)p(0¢k71|Zl:k71)d0¢kfl
plarZig) o p(Zi|aw)plon|Zyg—1). 2) [1l. CHARACTERISTICS OF THESBFFORAUDIO DATA
This two step process firstly requirespaediction stepin In this section a number of parameters of the Steered

which the posterior distribution from the previous timepste heamformer (SBF) localisation function and of speech fitsel
p(ak—1|Z1.x—1) is propagated using a model for the expectegte studied and suggestions of how these observations might
dynamics of a persom(ay|ax—1), to give us the predictive pest be integrated into the AST framework are discussed.
densityp(c|Z1:x-1). In the second step - thepdate steghe  The SBF function has been chosen as the localisation
likelihood function (formed from the measurement model) i§,nction for this algorithm for two reasons. Firstly, it pides
combined with the predictive density to obtain the posterignore accurate tracking performance as demonstrated by Ward

distribution at the current time. et al. [6]. Secondly, as it is an ensemble localisation fiomgt
it avoids the complications of speaker crossing and speaker
A. Particle Filtering directivity which hamper the Generalised Cross-Corratati

The above pr0b|em may be both non-linear and mu|t€GCC) [10] in multi-target environments (aS further dissec
modal, while the measurement noise may also be ndR-V-A).
Gaussian. As such, there exists no closed form solutioneto th Within the literature, usage of the SBF function is becoming
problem. An alternative approach is Sequential Monte Carlgore widespread. Limitations which have previously prehib
(SMC) which attempts to estimate the distribution by cargyi ited its use as a localisation function have lessened due to
out the above integrations on a large set of weighted discréicreasing computational power.
samples, also known as particles, which can then be used t@he Steered Beamformer (SBF) functionis a measure of
form an estimate for the posterior density. correlation across a batch of signals for a set of relativayde
Efficient particle filtering was initially put forward by and is often seen as an indirect measure of how likely it is
Gordon et al. [9] as a simple bootstrap filter with weighthat the full batch of audio recordings, from a microphone
resampling. It remains an area of active research activiyray, originated at a specific location. The delay-and-sum
with a large body of published work. A general overview obeamformet, expressed by convention as a continuous Fourier
the principles and background to SMC filtering, particle Transform (although we will of course implement this using
filtering as it is generally known, can be found in [2], [1]. InDiscrete Fourier Transforms), steered to the physicaltioca
the following section the various components that are requi [ = [« y] is given by
to implement such a system will be introduced. ,
N,
> Sm(@) W (w)e /el dw  (4)

m=1

B. Source Dynamical Model S(1) Z/Q

Source movement in th&’ and ) dimension$ will be
assumed to be independent and can be decoupled as a restlére the measured quantity itself is known as the Steered
State dynamics will be modelled by a first-order LangeviResponse Power (SRP). The Euclidean distance between the
Markov process whose specifics were first proposed by Veteering location and the known position of theh micro-
maak [5] and retained by Ward et al. [6]. The model will b@hone,l,,, is T,,(1) = ||l — | The number of microphones
specified by its initial state and state transition distiitms used is denoted,,,.
which are of the fornp(ao) andp(au|ax—1) respectively. The 5, () is the Fourier transform of the recording made
discrete time equations for the dimension of the source stategt microphonem, while the weighting function}V,,(w), is
will be chosen to be the phase transfori,, (w) = (|S,,(w)])~ ",
which is commonly known as the PHAT transform.

T = QpTg_1 +wam . . . . .

B AT The frequency range over which the integration is carried
e = Ifglg; Tk out is denoted?. In what follows this range will be chosen to
z = €77 be 200-6000Hz, which corresponds to 371 discrete frequency

by = vg\/1—a2 (3) bins (Vieq) When using a discrete Fourier transform with a

frame length of 1024 samples and a sampling rate of 16000Hz.
ITracking in the vertical dimension is not explored hereinitagvould
require much more extensive microphone coverage than thelimvensional
case. It is assumed to be straight forward to extend any ssitdestate vector ~ 2For continuity we will maintain the same notation used by fahn and
approach, such as the particle filter, to the third dimension Johnansson [11].
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A. Distribution of Steered Response Power Values In this case, the distribution formed by the summation in
éEquatlon 4 (across all of the microphones) is non-standard.
However, once we have summed over all microphones and
| frequencies, the central limit theorem applies apprately
and we can compute the appropriate mean and variance
of the resulting normal distribution as 4430 and 295 units
respectively. Clearly the mean and variance of the regultin
distribution are directly dependent on the number of freque
?_nes and microphones used in the integration. A simulated
noise distribution, drawn according to Equations 4 and & wit

m = 12 and Nyeq = 371 and broadly corresponding to the
experimental noise distribution (solid red line), is ilzed
with a dotted red line in Figure 1 (upper).

Distribution of Signal Measurements: The distribution of
SBF peak values illustrated in Figure 1 illustrates that mvhe
a person is speaking the recordings of the spoken signal at
15¢ the array of microphones are significantly correlated witle o
another. The SRP value for which the origin (either clutter o
1r source) is equally likely is approximately 5500 SRP units.
Further experiments presented in [12] have illustrated tha
o5k this threshold is robust to the (grid) density at which thé-SB
function is evaluated and also to the level of additive noise
present in the recording environment. For these reasons the

Figure 1 illustrates the distribution of all the steered r
sponse power values for a fully evaluated 4x4m SBF functio
grid for 8 minutes of continuously active speech taken fro
two different speakers undergoing a number of differentbpat
and trajectories. The distribution illustrated in red esponds
to all grid valuesmore than 30cmaway from the true source
location, i.e. the approximate noise, or ‘clutter’, distriion.
The distribution illustrated in blue corresponds to the SB
function peak valuew/ithin 30cm of the true location i.e. the
source distribution. Note that it is common to normalise t
steered response range by dividing Ny, Nieq; this has not

been carried out here.
23(10’3

1

.??000 4(;00 5000 6060 7060 8060 9(;00 10000 11000 12000 13600 14600 non-linear CDF-based soft mapp|ng Suggested in Sectidd V-

Steered Response Value

uses 5500 units as its mean value.

B. Shape of the Steered Beamformer Function

,. As suggested by Lehmann [7], the minimum density at
‘ } which the SBF surface must be implemented to avoid aliasing
Y ‘ \ V (\ \ AP is defined by the range of integration frequencies used to cal
’, \ ‘4‘\1’ \,\\ culate the surface. However, implementing this surfacagusi

~ a very dense grid of points requires substantial computatio
power, hence a trade-off will be sought such that only this
minimum density is used. See Figure 1 (right) for an example
of the full SBF surface at a high density. The figure also
illustrates that the density usedly = 6y = 0.02m, is above

war ) what would be required to observe the underlying surface.
For example, if a low range of integration (such as 100—
Fig. 1. Upper: Signal and noise distributions of SBF valuég]), for 8 200HZz) is chosen, the width of SBF peaks will be much

minutes of speech. Blue: signal distribution. Red: noisdrithution. Dotted broader because the wavelengths of these frequencies ahe mu
red: simulated noise distribution. See Section IlI-A forrendetails. Nfeq =

371, Nm = 12. Lower: An example of the full 2 dimensional SBF surfacéongejr- Experimeqts hajve shown, [12], that a grid with cell

evaluated at a 2cm resolution. Each of the points on thisaserfs equivalant density of 0.8m will typically observe these peaks.

to the plxe_ls mentlongd in Section III-A, however this stefis NOT fully For the SBE integrated over the full range, a speech signal,

evaluated in our algorithm. Note that this surface only esponds to a small . . . .

portion of the recording room. with maximum frequency in the range of 4000-6000Hz, will

result in an SBF suface with source peaks with 3dB width of

Distribution of Clutter Measurements: Now consider 5-10cm. For this reason, the SBF surface will be discretised

what defines the distribution corresponding to clutter alonto @ grid with cell density of 10cm in what follows.

The complex phasor component due to microphamgein

Equation 4, is denoted as follows C. Other Important Issues

= S (W) Wi (w)ed@Tm (D¢ ) Frequency of Useful Measurements:As previously ob-
fim = ’ served [13], speech is a highly non-stationary signal whose

which is defined to have unit magnitude when using the phaiégquency content and activity varies widely from one frame
transform. Should each of th¥,, signal phasors be entirelyto the next. Typically the SBF trace for a speech source will

uncorrelated with one another, the phases will be uniform@@nsist of a sequence of useful measurements followed by a
distributed in the rangé, 2], as follows sequence of silent or corrupted frames containing no useful

} measurements. This behaviour is difficult to model as each
R=¢", 0 ~U(0,2m) (6) syllable, word or sentence can vary in length from speaker to
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speaker and from utterance to utterance. Instead, we eillda Furthermore if a target is present it may only influence the
this problem with a data-reactive Markovian activity détec pixel measuremeptin which it is located. As a result the

in Section IV-C. likelihood can be represented as
Interference between sourcesinterference between two
sources simultaneously active in the same acoustic fieltlgre p(Zle) = Hp(zij|o‘) (8)
o

reduces the frequency of useful measurements when compared J
to the single source scenario. This is due to signal-toadign H ps+n(2ij) H P (2i5)
interference. We will adjust the tracking parameters of the i,jeC(a) i,j¢C(a)
multi-target tr_ac.:kmg extens!o_n proposed in Section V t\c/)vhereC(oz) is the set of subscripts of pixels affected by the
account for this; a more explicit solution would be to penfor . )

. rget, with state vectaw:
some form of source separation at the outset to suppress o{ﬁe

active sources. Cla) ={(i,7); tA — x| < A/2,[JA —y| < A/2}  (9)

) ) ) The likelihood functions for pixels in noise and in a combina
D. Accommodating Physical Observations tion of signal and noise argy(-) and ps n(-) respectively.

In this section a new likelihood function for the particledil Using the particle filter technique the update stage of the
to best accommodate the underlying characteristics of Bte Sfilter is achieved using weighted resampling in proportion
function as identified in the previous section is designed. to the particle likelihoods. The resampling weights aresthu

Firstly classical approaches to tracking typically in@lvw(a) « p(Z|a). However because this weight need only be
an initial step in which a small number of useful positioevaluated up to a scaling factor the likelihood function ban
measurements are extracted from the sensor output (em. fidivided by [[, ; pn(2ij|z,y) giving a likelihood ratio
raw radar scans) using sensor signal processing. Howeger th

step usually requires a thresholding process; which asasell q(Zla) < ] Uzj) (10)
often being subjective, leads to a loss of information amut# i,jEC(a)
the generality of the tracking algorithm. where

Secondly for AST with the SBF function, this step would z;) = ps+n(2ij) (11)
initially require the calculation of the SBF surface in the Y pn(zig)

full region of interest so as to determlne_z p053|ble Cand'da{'his key step means that the likelihood ratio, Equation 11,
peaks from the surface. To calculate this function at a suf-

g . . . Fed only be calculated for the individual pixel in which the
ficient density of points to guarantee the observation of all’ " . PR . .

. . pe*mcle is located if using a single pixel model (or for thet s
candidate source peaks (using the full frequency range Y nixels located in the immediate vicinity of the particle
interest) is computationally prohibitive [6], [7]. Ins&kathe P y P '

I Uﬁ,ing a more defined pixel model).
authors proposed limiting the frequency range fo a sma Moreover, when tracking accurately the particles will typi
band of low frequencies. This allows the evaluation of the ' g y P P

. . ) . : cally form a tight cluster around the true source locatiomsT
entire surveillance region at a low density (which can theneans that the measurement value for a particular pixel
be normalised). This surface is then used to provide particrp P PLXS,

proposals while later the full frequency SBF is used to eatalu may be shared by many of the particles corresponding to a par-
the particle likelihoods ticular target. This leads to a dramatic computational cédn

If particles are closely positioned and the gradient of sgb the SBF calculation is the computationally intensive ste

surface is constrained by the frequency content of spetachthiIS algorithm, since each pixel likelihood now only needs

: . o o0~ to be evaluated once and then stored. The benefit of this is
may be considered unwise to persist in calculating likelid . : . . . .
. ! . studied and discussed in Section IX. Finally, resampling of
what can only be very marginally different. We instead pis®o : . . . :
. . ! . o the particles is carried out at the end of each iteration.
evaluating the likelihood function on the points of a gridigéh
have a carefully chosen density. As a result the likelihood
function of neighbouring particles need only be calculatedd. Adapting TBD to Acoustic Source Tracking

once only (and shared when required). The overall number ofrhe TBD framework was then applied to the AST problem.
SBF evaluations required falls dramatically. This altéi® Once again, the idealised assumption that only one single
approach is introduced in the following sections, drawimg Qgiscrete cell of the discretised SBF surface is affectedanhe

the Track Before Detect (TBD) framework [14], [15]. active source was made.
As discussed in Section Il an SBF grid density of 10cm is
IV. TRACK BEFOREDETECT sufficient to observe the majority of promising peaks (alidio

'glcreasing this density may lead to even more accuratetsgsul
The SBF grid will thus be discretised with this density foe th
results of this paper.

In the field of Electro-Optical sensor-based tracking, it i
assumed that at each time stepa pixel grid of/J resolution
cells is read simultaneously and that an individual pixe))
has an intensity szij(k)' The complete sensor measurement 3More accurate sensor models may allow the target to comgritnimore

is denoted than one pixel, however we have observed substantial \ttyiai the shape
of the peak from frame to frame. Future work could perhapssicen more
Z(k)={zjk):i=1,...,1,j=1,...,J}. (7) accurately modelling the peak shape via a point spreadifumct
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In standard TBD, Equation 11 requires that the SBF valvhile the truncation constant for the normal distribution,
ues be normally distributed with known mean and variand€(z;;, 1,0%, y), used to evaluate the signal and noise likeli-
statistics. However, the actual range of the SBF values tis rmod function is
distributed in this manner. As a result a non-linear mapping

1 -1 -1
will be used to adjust the SBF values onto a more balanceds  y = [/ pS+N(Zij)dZ:| =2 (erf {;D
range. 0 V20s4n
(16)
The variances may be chosen to be non-identical and other
B. Magnitude Mapping forms of the likelihood function might, instead, have besadi

. . . . ... if a better match to the data can be found.
As proposed in the previous section, the particle likelthoo . . : .
For identical variances(cs+n = on), these constants will

function will be based on a measurement function calculated S . . T
X . . ch':mcel out. The likelihood ratio for a pixel will simplify to
for a set of pixels rather than a continuous function. As suc

the measurement related to a particular partieleas defined I(25) = ex 2z — 1 17)
in Equation 1, is that of the point at the centre of figel in i) = &P 203%;
which it lies,

Example likelihood functions, as well as the steered respon

2@r yk) = 24 for (i, 7) € C(a) (12) Ppower mapping,. are illqstrated in Figure 2. The standard

deviation used in this figuregs.n = onx = 0.5, were

From the study of the behaviour of the SBF function in Sectiamned manually and gave a reasonable modeling of the data
11, it was noted that for a particular recording environrhand on average. Experimentation with non-symmetrical likedit
experimental setup the SBF function results in distrimgiof functions could be a source of future work. This values were
signal-and-noise and noise-only measurements with differ used in the experiments carried out in Sections VI and VII.
mean and variance statistics. In an attempt to better urzahet's
the measurement function a nonlinear mapping to the SBF
values,S(z,y), is applied as follows:

1

N

0.8

=
o

0.6
0.4

Z(xvy) = (I)(S(Iay);gvo'g) (13)

o
[

0.2

Mapping Intensity — z(I)
Noise Likelihood - P
=

o
o

0.5 1
Mapping Intensity - z(l)

0

where ® is a normal cumulative distribution function with A cred Heaponso Pouer - 301
meanS = 5500 and variancer% = 500. As a result the mea-
surements have been mapped onto the range/0, 1], such
that the distribution mean lies between the noise measurtsme
(lower end) and active measurements (higher end) without
applying a hard threshold. This approximate mapping doés no .
produce normal distributions, as there is substantiabity % Mapping Innsity - 20) ®" Mapping imensiy - 20)
in the distributions over time. However, it has been found to _ _ _ _ ) _
be robust in practical operation. Finally, the parametarsize Fig. 2. lllustration of the functions used in calculating the likelod ratio.

. . . ] First the raw steered response values are mapped onto thgerfih— 1]
calibrated in advance or online and the choice of parametgfg a normal CDF (upper-left). Then the likelihood ratiovger-right) is
values is determined only by the number of microphones amdluated as a ratio of the noise-only likelihood functiapger-right) and
the frequency integration range the signal-and-noise likelihood function (lower left).

Following the framework proposed by Salmond and Birch
[14] we shall assume that the background noise is modeléd Activity Indicator Variable

as a zero mean Gaussian with variancergf for all pixels  As discussed previously [13], the temporally discontirgiou
(i,7)- As aresult the noise and signal distributions will becomgature of speech must be recognised to allow for a complete
normal distributions centred on zero and 1, respectively apsT system. The authors of [13] introduced a model which
with limits of [0, 1] as follows uses a direct measure of voice activity as a parameter of the

2

i
5]

15

1

0.5

Signal & Noise L'd - Py
Likelihood Ratio — P, /P
o N S o o

psin(zif) tracking system. Generally, when the source is deemed to be
1, . . . . .
l(zij) = T)j inactive, the particles are allowed to drift according t@ th
PN Ji; 12 dynamical model without recourse to the measurement data
_ osenN (2l 05, n) (14) (the publication goes on to propose a number of different
enN (24530, 0%) versions which soften the judgement of speaker inactivity)
wherecy andes., v are the respective normalisation constantsis @pproach is reasonable and the behaviour presentad whe
as a result of truncation of to [0, 1]. the speaker became silent was as one would logically expect

The truncation constant for the normal distributior; & 9radual increase in location estimate variance.
N(z;,0,0%), used to evaluate the noise likelihood function However the Voice Activity Detector proposed therein op-
is erated on the actual recorded speech signal rather than on

) the measurement function itself. This solution is one degre

1 — . .

1 :

x — [/ pN(Zij)dZ] .y (erf[ D (15) removed from the level of measurement we ideally require
0 V2oy

whether the target can babservedby the SBF or not. Such

—1




JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

a system will perform poorly should another source be activ@élgorithm 1: Track Before Detect Acoustic Source Track-

simultaneously in the room or, for example, if there was ang Algorithm

loud npise for a short period_elsewhere in the room. To caunte ¢, pe{l:N,} do

these issues we propose to instead detect activity dirirotly

the SBF function, while also integrating the proposed di&tec o ®

mechanism directly within the Bayesian tracking algorithm Draw a new activity state),™, using (18)
As mentioned above, we have added an activity indicator Evaluateq(z|a) ??Lng (1(9))

variable, \, € {0,1}, to the state vector in a similar way Update weightw,”” = w;”, q(Z|a)

to [14]. This variable will attempt to track the instantaneo  For eachp setw,(f) — wl(cp)*/ Zng’p {wlip)*}

activity of the source: if the source isbservablevia the Resample if necessary

measurement function at the time-frame in question. F@isin

source operation it is anticipated that this will be broadly

analogous to syllable-level activity estimation. The paeter

is not intended to determine overall longer term speaker

activity — a problem which has been examined in [16]. The modification of single target AST algorithms to track
The activity indicator variable will evolve according to amore than one simultaneously active target would seem at

Markovian switching process with pre-determined traaaiti first glance to be a simple and logical extension. However,

Predicto” by drawing fromp(ay|a'?))

V. MULTI TARGET ACOUSTIC SOURCE TRACKING

probabilities — where the acoustic field within a typical room is affected by each
sound source’s activity - something that is not the case for a
Prob{ Az 11 = a|A\p = b} =114 (18) radar scanning system, for example. This means that signal-

to-signal correlation — required to produce effective GCC

is the probability of a transition between stateandb, where , SBE function — is severely compromised. In turn this

a,b € {0,1}.The optimisation of these parameters is discussggyjyces the proportion of frames providing useful measure-
in Section VI-B2b. Following optimisation, we chose thénents — this before even considering the problem of source-
probability of birth, TI; o = 0.05, and the probability of {5_measurement data association.

death,Ilp,; = 0.05 which were seen to perform well. Particles  \yjtiple target acoustic source tracking using the GCC as
with an inactive state will drift via the dynamical model Wit ;5 nmeasurement function has been attempted by Ma et al.
the likelihood ratio set to unity, so that the final likelitbo [17], [18]. The experiments carried out to test this algorits

weighting function will become (time index omitted) performance used signals simulated using the image method
psan(zij) and assumed the speakers to be ideal point sources. Both of
q(Z)a) x H ﬁ (19) these simplifications are unrealistic and the resultinghmet
N\<ij

A=1, (i,j)€C(a) is unlikely to successfully operate when using real recugsli

Furthermore the number of microphone pairs (4) used in

When the target is aciually speaking, the likelihood ratiy, o presented simulations is insufficient to provide adefjua

[(2ij|A = 1), of particles de_emed to b? active W'” typically becoverage of a typical room when using the GCC measurement
greater than one. Meanwhile, the ratio of particles deeroed

be inactive is defined to b itv. In thi i dol flinction. As mentioned previously, at least two GCC angle
€ ihactive Is defined 1o be unity. In this way aclivé parscl€,qimates are necessary at all times to provide a 2-D latatio
will eventually proliferate upon resampling.

estimate. Given the effect of speaker orientation, apioac

_Pseudo-code for the Track Before Detect AST algorithm igy yairs would be necessary to track two real sources using
given in Algorithm 1. the GCC

~ @) Overall Source Activity Estimatioms each particle’s  The complexity caused by an unknown number of speakers
activity variable discretely determines the source to leeei eqyarly criss-crossing each other’s path in each of th€GC
active or inactive, the overall probability of activity ohé  fnctions, while simultaneously fading in and out of adgivi
source can simply be estimated as the proportion of actiy§ing silence, makes for a very difficult data association
particles as problem. Figure 3 illustrates this problem and for thesswoea

Ny (D) the SBF will instead be used as the measurement function.
D pm1(A)

P

(20)
A. Multi Target Track Before Detect

Where)\gf) is the pth particle of a filter of N, particles. This  Multi-target TBD is a relatively new extension of the TBD
will allow us to track source activity directly — as distinctmethodology, [15]. According to the TBD methodology we
from signal energy activity (the typical VAD output). have assumed that the source may influence only the pixel
Furthermore as this activity variable is dependent onlalue corresponding to the cell in which it is located (or the
on SBF activity in the region of the particle cluster (whichiegion surrounding the source location if sensor smearagy h
coincides with the estimated source location), it is pdesiboccurred). Therefore as Kreucher et al [19] suggest, we will
to track the activity of multiple sources simultaneously iconsider the sources to behave independently when widely
different regions of the room — something that would nateparated. Tracking in this scenario will be identical te th
be possible with a generic voice activity detector. single source case in Section IV. Alternatively, when searc
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B. Joint Tracking: Widely spaced sources
’ e Two widely separated sources will be considered to be inde-
1sf ° °, ] pendent of one another and will behave as seperate individua
. o o || targets. This is an approximation which is well-justified in
the case of widely spaced sources where there is negligible
g% interaction between their likelihood ratios. A state vedtr
o the sources at time framek will be
2‘05’ 1 O‘Z - (IZ,IZ,yZ,yZ,)\Z) (21)
At o ° ] As in the case of single source tracking, the generic dynamic
4 e model (Section 11-B) will be used as the transition prior fire t
w ° | prediction step.
2t °© 3o ] Because the sources are widely separated, it will be assumed
— that only SBF pixels in the vicinity of the true source pasiti
' X dmension ] will be affected by the source’s speech signal. As a result,

the likelihood ratio for source will be identical to the single
source case and evaluated in a similar way to Equation 19.

Mic Pair 1 Mic Pair 2

C. Tracking more than one closely positioned source

When considering two sources located close to one another,
at time k, a joint state vector will be used

20 30 40

Mic Pair 3 Mic Pair 4
- ar = (a),a?)

Oéllg = (Ilaylvilvyla)\]];)

O‘i - (I25y27i27927)\i)5 (22)

30 40 50

10 20

with a single associated weighting, for the entire particle
target cluster. As in the case of joint source tracking, tth-i
vidual sources will be propagated according to the Langevin
model, however, we will modify the dynamical model subtly
to discourage the coalescence of two speech sources.

Since the repulsive forces are computable directly from
the previous state value at timie— 1, the causal Markovian
Fig. 3. Upper: Paths taken by two sources moving in a room. lllustlat structure of the ij”am'Ca' model is retained. Now, however,
also is the room boundary and the location of the microphoaiespLower: ~ Sources are explicitly modeled as dependent upon one anothe
lllustration of the GCC delay paths for the two moving sosrcehis figure See also Khan, Balcher and Dellaert [20] for an alternative

shows the GCC delays that would be expected for each of thephane . .
pairs. Each source begins at the circular marker and over é6osds moves non-causal repl"ISIOn mechanism that uses a Markov random

around the room and back to the markers (following the samb)p®ne field formulation.
complication is illustrated at 15 seconds when the targeces cross in Source Repulsion Mechanisithe distance between the two

5 of the 6 microphone pairings - causing considerable taigentification " .
complication. A second complication is illustrated in thacte corresponding target positions can be obtained by

to microphone pair 2 (for the sample duration and in other noptione traces o B} b}
to a lesser extent). Because source two is facing away frismifcrophone diz = \/(ml —32)* — (y1 — ¥2) (23)
pair it cannot be observed for the duration.

Mic Pair 5 Mic Pair 6

with a relative angle between them of

are closely spaced a joint likelihood will be consideredeTh O = 2@, p0). (w2, 2))- (24)

transition between these two states is explained in Sewtibn We shall propose that beyond a certain particle separation,
di2 > drep, the sources are neither attracted to one another
for repelled (modelled as two independent sources using the

our algorithm) we will introduce a source-to-source rejwels -@ngevin motion model of Section 1I-B). However, when
effect for closely spaced targets. A joint particle statdl wiSCUrces become closer than this; < drep, a repulsive effect
then represent the sources’ combined behaviour and trdWll force them apart. This force is modelled as an acceiegat
the sources jointly. These two scenarios — joint and digjoifP"c€ @pplied in the opposite relative directionoi. A simple
tracking — will be explained in the following sections. squared function has proven to work satisfactorily,

Two human speakers moving in a robmill generally
not separate or coalesce. To preclude this behaviour (wit

_ arep(d12 - drep)2 if dio < drep
Freplare) = { 0 otherwise (25)

4This work will concern itself only with a two source scenaribhe h d - . . | limit of h
possibility of extension to three or more sources is disedisa Section X WNEre drep = 0.3m Is an approximate lower limit of how

but would require a further coding effort without affectittge core algorithm. close two people would typically approach one another while
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speakingarep determines the magnitude of the repulsion force

and was chosen empirically to give reasonable behaviour. E
The function is illustrated in Figure 4. This force is then %
decomposed into its separafé and )Y components, which R
for the first source is 2
Fr}ap,x(ak) = 005(912)Frep(06k) qg)’
. @©
Frepy(ar) = sin(612) Frep(c) (26) 5
while the force applied to the second source is the equal 0 ‘ I .
opposite force 0 0.1 0.2 0.3 0.4
Source Seperation [m]
Fr%p,x(ak) = _Fr}ep,x(ak)
Fr%p,y(ak) = _Frlep,y(ak)- (27) F;Le
1
See Figure 4 for a graphical illustration of the decomponsiti Freiy
These resultant vectors are added to the original dynamical 1
model (in this case for th&-coordinate of source) 2 d1‘2,,. - Frepx
-0
Ty = apdi_y +baFr + Fgp,(ar-1) (28) s B .§
i = x4 dTi3. (29) J 2 g
2 rep,y
Finally for each sources, the subset of pixels affected by the Frep = —
x—direction

source is given by

Cla®) = {(i,7); [iA —a®| < A/2, i — 7| < A/2} (30) Fig. 4. Upper: lllustration of the repulsion effect: as source segt@n,

and the resultant likelihoods are given by d12, falls below the thresholdirep, the force becomes increasingly significant.
Lower: The decomposition of the resultant force into dinmra components.
ps+n(zij)
q(Z]a”) o II (31)

Ae=1, (i,j)€C(a®) PN (2if) of respective source particle clusters afygksis an empirically
) ) ) chosen separation threshold set to 0.65m in what followis Th
Following from Equation 9 and assuming that the sourcgg,e represents the range beyond which the SBF surface is
may not occupy the same pixel ce{l}(a_l) nC?) =0, _ uneffected by a particular source, hence two sources can be
the product of the two likelihood ratios is calculated to&giva5symed to be independent beyond this seperation.

an overall likelihood ratio for the joint particle cluster The integration of this state transition into the algoritien

N, detailed in Algorithm 2 fortwo sources
¢(Zla) = [T a(Z]o*). (32)
s=1
VI. EXPERIMENTAL PERFORMANCETESTING
D. Transition between tracking mechanisms To test the algorithm a set of recordings were made in a

Transitions between the joint particle filter and two indivi ©fficé room with twelve microphones spaced around a space
ual particle filter systems will be decided based on the MMSEUINlY 5Sm x 5m, as illustrated in Figure 5. The recording
estimate of the source particles and their variahceghile S€tUP and other details are identical to those used in [21].
this may not be as accurate an estimator as the Kullbaum(-)t,e that the source used was a computer loudspeaker egnittin
Leibler Divergence, for example, it has proven to be su,»Iﬁtietypmallconversatlonal speech. The audio sample used was a
in practice. recording of a BBC rgdlo presenter and has beer_l posted on

We shall denotd, — 1 as the case of the two targets treateU" webpage. The main sources of background noise were the

jointly using the closely-spaced algorithm, afhd= 0 as the ven_tilation system and cooling system of the record_ingdapt
case of independent filtering of the two targets. While the RTs, time of the room was not determined, the

acoustic behaviour of the room was compariable to a typical

The transition decision is then taken according to ) -~ i ! ‘ -
office or living room. The tracking algorithm is tested using

1 if di2mmse < ditres 250 particles, which allows for realtime operation in MATBA
I = or (d12,_MMSE — 01— 02) < Othres (33) ona typical PC. A sample rate of 16kHz, frame lengths of
0 otherwise. 1024 samples and frame overlap of 50% were used in all

whered;, yvse is the distance between the MMSE estimate@xperiments.
of the source positions;; ando, are the standard deviations Firstly, we shall determine the stability of the proposegbal
rithm in increasingly difficult circumstances while comipayr
'5Note: the transition between _the joint and_ disjoin_t peetiilters uses the it to other particle filter strategies (Section VI-A). We Wil
distance between the MMSE estimateghaf entire particle sefThe unrelated h d h L f f the k
repulsion mechanism, in Section V-C, uses the distance dmgtwdividual then go on to demonstrate the optimisation of some of the key

targets within a single (multi-target) particle. parameters of the system (Section VI-B). In Section VI-@, th
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Algorithm 2: Switching Acoustic Source MTT Algorithm 1) No noise added
for p e {1:N,} do 2) 30dB (no!se barely _notmeable)
3) 20dB (noise becoming noticeable)
4) 10dB (noise level significant)

Determinel”’ using (33)

it 1. = 1_th<_an_ ®) ) i 5) 5db (noise beginning to drown out speaker)
Predlct. jointay” usinga,,”, and repulsion 6) 0db (speaker slightly drowned out)
dynamical model 7) -5db (speaker substantiality drowned out)

(p) i
Evaluateq(Zy|a'?’) using (31) For each scenario a particle filter was run using each of three

_Update wmghtwff) — w,(f_)lq(zk|a§f)) measurement functions: the GCC, the SBF using Lehmann
if Dymse > Dinres then and Williamson’s Pseudo-Likelihoodmethod [23] and the
L Resample each target seperateliﬁ,i = w? proposed Track-Before-Detect SBF. Each filter utilisechide
Divide State Vector into individual Source State tical dynamical model settings, resampling schemes and 250

Vectors particles.
else Ve
| Resample if necessary ' —
L 2l
else 150 o o
for s € {1:2} do | e o
Predicta; usinga;_, and dynamical model E os
i Weightwif),z* according to (19) g o il Diecton
if Dyvmse > Dinres then > 08
for s € {1:2} do e ©
| Resample if necessary -15f o °
- -2 o o
else
ReSamp|e 235 2 15 1 _Of—direcolion [nl:]s 1 15 2 25
for s € {1:2} do
Randomly combine individual state o
vectors:al? — (o). ... ol ] o ——ar

Weighted RMS Location Error [m]

20 10 5
Added White Noise SNR (dB)

algorithm will be compared to existing algorithms using gom
common metrics.

Finally, results illustrating the performance of the Multi
Target Tracker will be presented in Section VII.

7

SBF-TBD|
6| —— SBF-PL
GCC-GL

A. Comparison with other algorithms

As mentioned in Section Ill, a GCC-based measurement #ddea whie Noise SNR (@8)
function fails to utilise all available signal-to-signaircelation
information. This means that particle filter tracking withist Fig. 5. Upper: Path taken by a source moving in a room. Note that tiealegr
measurement function will be unstable for certain sourdggins and ends in the lower left corner and always facesérdirection it is
o . . . _moving. The microphone pairs mentioned in Section VI-A ambered 1-6
pO_SItIOI’lS, paths and record_lng scenarios. For example’r@gfmm the upper right corner clockwise. Lower: Tracking periance for three
5 illustrates a path in which the GCC measurements rebjcking algorithms tracking a speaker in increasing leveff added white
principally on 0n|y a single microphone pair (pair numbetoise. Note the collapse of the performance of GCC-basexkdravhen the

1) for the first half of the recording and for the secongd 'R falls below SdB.

half pair number 4. Because of this the tracking algorithm Figure 5 (right) illustrates the performance of the aldoris
becomes unstable as the frequency of useful location estimgor each scenario, averaged over 50 Monte Carlo simulations
from secondary pairs (numbered 2,3,5,6) is low due to th@though the SBF frameworks consistently out-perfértine
directionality of human speech [22]. GCC version, the very poor performafias the GCC frame-

To simulate increasingly challenging recording condigionyork when the added SNR falls from 5dB to 0dB is of
white noisé was added to each of the 12 recorded audigarticular note. In these scenarios the secondary micrapho

samples afterwards. The average signal-to-added noi&e rgfirs fail to provide sufficient bearing estimates to loglin
of the samples were as follows:

Weighted Mean Std Deviation of Particle Cluster [m]

"The superior tracking accuracy afforded by the SBF measemefanction
6The implementation of this test with gradually increasieyerberation has previously been identified by Ward et al. [6].
would, of course, have been more insightful but a varechisimber was not  8Note that an average error of one metre corresponds to ctevipéeking
available. failure, given the dimensions of the experiment
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3
=]

2 dimensions with the only useful measurements being those
from pair 1 (and later pair 4) — illustrating the deficiency of
the GCC measurement model.

Comparison with other SBF Algorithms: While the per-
formance of the TBD algorithm does marginally outperform
the pseudo-likelihood algorithm, it should be mentioneat th
the parameters of neither algorithm were specifically ojstah
for this particular audio sample. The following highliglaigo-
rithmic issues which illustrate the advantages of the psepo
TBD algorithm. ‘ ‘ ‘ ‘ ‘ ‘ ‘

Firstly, by its nature, the distribution proposed by Lehman e U
et al. [7] cannot be properly normalised as recognised by
the authors. This means the framework’s treatment of partic
weightings in successive frames may not be entirely egleitab
This issue has been addressed by the TBD method.

Secondly, the correct implementation of the TBD algorithm
allows for a large reduction in SBF computation. When
multiple particles are located within the same TBD pixel the :
SBF calculation need only be carried out once and used for all :
such particles. The computation time required for each ef th :
algorithms (when implemented using MATLAB on a typical
desktop PC) was as follows:

o Pseudo-likelihood SBF-based particle filter: 5.94 times

N
1=}

Mean no. of SBF evaluations
8

5 10 15 20 25 30 35
Time [sec]

0.05 01
TBD Cell Size [m]

0.01 0025 005 01
TBD Cell Size [m]

real time
. . . ig. 6. Upper: Variation in the number of SBF evaluations (uppertplo
. 'I_'rack-Befor_e Detect SBF-based particle filter: 1-09'1-ﬂrried out using the TBD framework over the course of a spemmple
times real time (lower plot). Note how the number of evaluations requiredgg during silent
« GCC-based particle filter: 1.3 times real-time periods. Lower: The effect of varying the density of the K¥aefore Detect

) ] ) ~grid cells. See Section VI-B for more details.
Note that the computation required for the TBD patrticle filte

is variable as the number of computations will increase when

the particle cloud becomes more diffuse, because more SBFEach data point is the average of 50 simulation runs, each
likelihood evalutions are required. This occurs duringgesu tested on the same 30 seconds of recorded data.

in speech activity and when there is greater speaker latatio The RMS estimated source location error (upper plot) was
uncertainty as illustrated in Figure 6, again averaging & €valuted while varying the SBF TBD grid density. Meanwhile,
Monte Carlo runs. In the following section the correct cleoicthe lower plot illustrates the mean number of SBF evaluation
of activity variables is shown to remove this instabilitytiezly. ~ required at each grid density per frame.

Regardless of these issues, so as to maintain stable tgackinThis means that for a grid density of 0.1m, on average, each
during an extended speaker pause a large particle clusitg&ered response value was evaluated just once — yet shared
diffuse enough to explore all plausible regions of the stageross 23 different particles. When the grid density is set t
space, so as to ensure the target's eventual re-detecsiond-P1m each evaluation was shared across an average of just
required. The Track-Before Detect framework allows us to dbparticles — a huge reduction in efficiency. The cell size of
this while balancing the computation of the overall aldgurit the TBD SBF grid is set to 0.1m for all other simulations in

this paper.
_ S The mean location error for the particle filter falls as the
B. Variable Optimisation cell size is reduced. However it can be seen that there is

In the following section the optimisation of two of the mordittlé improvement gained by reducing the cell size below 10
important parameters of the TBD algorithm is illustrated. 25cn?. Furthermore, the number of SBF evaluations required

1) Density of the SBF Track Before Detect Gridarying (and the associated increase in computational expenselygui

the density of the SBF TBD grid affects the particle filtef'cr€aS€s Whe_n the density is reduced below 10—25cm. As
tracking accuracy as well as the required computation. i trsuch this cell size, 10-25cm, representsw@et spoin which
section the optimal grid density is sought. The experiment §ccuracy of the particle filter and the computational demand
related to but distinct from the experiment in Section I, | ©f the beamformer are balanced. This optimal grid size is
Section 11l the minimum grid density required so as to obgeryetermined by the number of microphones used. _
the full set of SBF surface peaks was examined with different2) Parameters of Activity Indicator and Stability during
frequency ranges. No particle filter was implemented tinerer>Peaker Silence:
For the experiment presented in this section a particle filte _ _ , : _
The mean location error for the highest grid density - apipnaxely 5cm

tracked the speaker path .iHUStra.‘ted in Figure 9 (upper).plo_t gives an indication of the upper bound on the performancthisfor any
The results for a set of simulations are presented in Figuoealisation algorithm.
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a) lllustrative Example: Speaker with Silent Pauses:resumed typically accurate source tracking (defined heee as
As mentioned previously the activity indicator allows us tonean error of less than 0.15m). Setting the parameter to this
determine directly the activity of a speaker from the péeticor larger values achieved adequately responsive perfarean
filter behaviour. Knowledge of the speaker activity is usefu
both as an algorithm output but also in improving computa-
tional stability during speaker silence. In this sectioa thain
parameters of this system, the birth and death probabilitie
and P, are experimented with.

Figure 7 illustrates the algorithm results for a speaker
moving in the room described above. The speaker is silent
on two occasions — between 5-9 seconds and between 18-
23 seconds (with its location during silence indicated bigetb
lines). The particle filter tracks the speaker location aatly
during speaker activity. However, note how the uncertainty
of the X and Y position estimates grow, as expected, during
sections of speaker inactivity.

Silent Period 1
Silent Period 2

v

N

Time taken until < 0.15m [m]

S

o

L L L L L L L \
001 0.0025  0.005 0.01 0.025 0.05 0.1 0.25 05

RN
g8 &

SBF evaluations per frame
N
8

Correct Activity Labelling %]

0.001 0.0025 0.005  0.01 0025  0.05 01 0.25 05
P and Py

X Distance [m]

5 10 15 20 2
Time [sec]

Fig. 8. The effect that varying?, and P; has on the ability for the TBD filter

to correct itself after a period of speaker silence (middie)d the amount

of computation required during such a silence when compaceevhat is

typically required during typical active tracking (upperAlso shown is the

Y Distance [m]
o

° e lsen) * ” percentage of correct activity labellings over the entii@cking segment. The
g : ‘ ‘ ‘ x-axis of each plot has a logarithmic scale.
E MWWW However, the responsiveness of the system for large values
o s el B = of P, and P; must be traded against increased SBF compu-
o tation - due to a more diffuse particle cluster. The centoe pl
OW——WW——M illustrates that, when the activity parameter is set to gdar
‘ ‘ ‘ ‘ ‘ value (Py; P;) > 0.05), greater SBF computation is required
o Y tmered ’ e when the speaker is silent (red and blue) than when it isectiv

(black) as the particle cluster is more defuse. Fprand Py
Fig. 7. Example of single target tracking with speech pauses. Tmgck N the region of 0.025-0.05 it can be seen that the filter is

performance in the X and Y directions is shown in upper anttednp figures computationally stable regardless of speaker activity.

respectively. The correct path is shown by a red line (solémvactive, dotted The lower p|0t illustrates. over the entire speech sample

when silent), the particle filter mean location estimatehvatsolid blue line . . . . .
and estimate variance bars are shown either side of the astiim dashed the percentage of iterations in which the speaker activig w

blue. Note how the variance of the position estimate in@eakiring the two correctly labelled (including both active and inactiveipds).
periods of extended silence. The lower centre plot showsvbkition of the Again, the best performance is seen in the mid-range — with

overall probability of activity,p(\ i), while the bottom plot is of one of -
the recorded speech signals. (Aaveri) correct labelling of more than 95% of frames.
Previous filtering algorithms, [23], required a sufficigntl For the remainder of these experiments the switching param-

large particle set to adequately sample the entire surrourediers were set to b, = P; = 0.05. Note that in principle one
ing region during this silent pause. Instead, using the TB&ould estimate the parametefs and P; by ML or Bayesian
approach, if a particle is proposed to be inactive, using theethods; this has not been done here. Finally, figure 7 pigsen
Markovian birth/death process detailed in Section IV-@&nth an example of accurate activity estimation.

the associated target likelihood ratio defined to be unity

(Equation 19). This means that the set of currently |nact|\8 Monte Carlo Simulation Results

particles will have little effect on computational load.
b) Optimisation of Activity Switching ParameterSp as A final set of tests of this single source TBD algorithm

to optimise the switching parameter®, and P;, the speech was carried out against some common AST metrics. The
source, illustrated in Figure 7, was tracked while varying t results presented in Table | provide a comparison between
probabilities of birth and death. Figure 8 represents tealte the performance of the proposed SBF Track Before Detect
of 50 runs of the algorithm, each with 250 particles. algorithm and the GCC-based particle filter, [5], as well
The time taken for the filter to recognise that the speak#fire Pseudo-Likelihood and Gaussian Likelihood SBF-based
has resumed speaking (after a pause) and to resume accyattcle filters, [6]. The paths of the sources are illustat
tracking is illustrated in the upper plot (for the two diffet in Figure 9. Performance is measured in terms of the mean
speech pauses illustrated in Figure 7). For= P; = 0.025, squared erroré), the mean standard deviation of the particle
this shows that after approximately 0.6 seconds the filter haluster (MSTD) as well as a measure of the percentage of
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Method e(m) MSTD(m) TLP N, Time (sec)
25 - Example 1 — 60.8sec
2t o o ] GCC-GL || 0.076 0.109 0 100 74.73
15| o ° SBF-PL || 0073 0310 0 100 12664
' SBF-GL || 0.105 0.359 0 100 560.67
i © © 1 SBF-TBD || 0.083 0.061 0 1000 73.09
£ 05 Example 2 — 33.6sec
g GCC-GL || 0.088 0.128 0 100 35.27
g SBF-PL || 0.108 0.330 18 100 7174
i -05 SBF-GL || 0.125 0.353 22 100 311.14
o o o SBF-TBD || 0.108 0.053 0 1000 48.65
-15p o Initial Direction © 1 TABLE |
-2 o o 1 Comparative Results for GCC based bootstrap, SBF basedtomotand
s . - SBF TBD particle filters tracking a single source. Each fighes been
25 -2 -15 -1 s L [015 1 15 2 25 averaged for 50 algorithm runs
25
[e] o]
’ . VII. M ULTIPLE TARGET TRACKING RESULTS
15 o]
§ R o An evaluation of the tracking performance of the multi-
T os | target tracking algorithm is presented in this section. s
5, nitial Direction——— > | recordings were carried out using the same system described
%705 = | in Section V-A. Each source was recorded using the system
g _'l . described in VI and were then linearly mixed before the MTT
’ algorithm was run.
-15 o o
-2r e} [e] )
A. lllustrative Results

255 2 15 1 05 0 05 1 15 2 25 . . . .
X-direction m] Figure 10 shows an illustration of the tracking performance
: . , . for two different examples of two source tracking. The dura-
Fig. 9. Paths taken by the sources tested in Section VI-C. Exampetd i .
the upper figure, while example 2 is to the lower figure. Not th each t!on Of_ the two samples, 32 seconds and 54 Second_s resp_ec-
case the targets double back upon the original path an retarthe original  tively, is long compared to what has been tested previously i
location. Performance is not shown. the literature. Source 1 in each case is a female speaker and
Source 2 is a male speaker.
The particle filter is seen to track the two targets success-
tracks which fail completely (Track Loss Percentage, TLFEBJ"y' Npte how the varance of the location estimate varies
. : . — particularly for Source 2 in Example 1 (upper plot). This
which was introduced in [11]. S : . L . .
coincides with a portion of audio in which Source 1 dominates
Parameters of the dynamical model and other commeie second source. Because Source 2 is unobservable the size
system settings were set equal in each algorithm, while psf-particle cluster (as represented by the uncertaintpst)
rameters unique to a particular algorithm follow those @dot will expand to represent this uncertainty. This is simi@athe
in their respective papers. The particle numbers used fdr ealgorithmic behaviour observed during a silent gap of alsing
of the algorithms vary in this experiment, but an effort hasource sample. When the target is observable once more, the
been made to equalise the algorithm runtime instead. Fsr thirticle filter returns to tracking accurately.
reason, 1000 particles have been used for the TBD algorithm

but only 100 for the SBF-PL algorithm . B. Performance Evaluation

The average tracking error of the proposed algorithm is Comparative results for the proposed tracking algorithen ar
shown to be similar to that of each of the other algorithmgresented in Table II. The results show that accurate tngcki
However, the purpose of illustrating this experimentalites of two sources speaking simultaneously is successful and
is not to identify the superior performance of the TBD filtebnly a very slight degradation in performance is displayed
but rather to illustrate that it gives similar tracking aaey relative to the single source case (Table 1), despite the fac
to previous methods — while reducing the uncertainty of th@at dual source recordings will have a much lower propartio
position estimate. The MSTD for the TBD filter, indicativeof useful peak measurements due to cross-signal intederen
of uncertainty of the the position estimate and the stabiliindditionally, the computation time is increased only by abo
of the tracking algorithm, is substantially lower than fbet a factor of two, which we regard as satisfactory. Using the
other algorithms — which was achieved without increasimgBD framework has allowed us to avoid the data association
the overall computation time. problem which is often computationally intensive in mukip

The computation time of the TBD algorithm remains red@rget tracking algorithms.
sonable because of the vast reduction in the proportion of
likelihoods that need be calculated using the SBF-TBD. It is VIII. FURTHER WORK
anticipated that the SBF-TBD with thousands of particlel6 wi A number of issues are yet to be addressed by this al-
comfortably run in real-time on a typical modern computer.gorithm. Firstly, as mentioned above, there does exist the
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Fig. 10. Two sample recordings of two sources moving in a room, whee w
used to test the performance of the algorithm. The grourith tneasurements
are in black. An example of the tracking performance is @yetl on each
plot (dotted black lines). Example 1 is the top plot. The opbone positions
are indicated with circles. Uncertainty ellipses are shogwery 100 frames.

Source € (m) MSTD (m) TLP (%) N, Time (sec)

Example 1 — 32sec

1 0.110 0.076 2

2 0.114 0.118 10 1000 9214
Example 2 — 54.4sec

1 0.11937 0.11275 2

2 0.108 0.330 4 1000 184.66
TABLE Il

lllustrative Results for the SBF TBD particle filter tracinwo sources for
the examples in Section 10. Each figure is the average for g@righm runs

possibility of instability during extended silence. A higgvel
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IX. CONCLUSIONS

We have proposed a multi-target Track Before Detect algo-
rithm which can track multiple simultaneously active sgeec
sources.

Current Steered Beamformer methodologies are limited by
the computational inefficiency of tracking targets using a
dense cloud of individual particles — each evaluating the
measurement function at minutely different physical |aoz.

This paper proposes an algorithm using the pixel-based
TBD framework. The algorithm reduces the proportion of
likelihoods which are typically calculated per particle iafn
allows for a vast increase in the number of particles to be
used for a simular computational effort. While the tracking
accuracy of the algorithm was shown to be slightly bettentha
other single source AST algorithms, the much larger particl
cluster yielded greater stability. This illustrates thegrsed
algorithm’s utility lies in the most challenging conditign

An extension of the algorithm to track two sources was also
detailed. Performance for two source tracking examples was
seen to be comparable to the single source scenario and with
an increase in computation of only a factor of two. Tracking
stability for closely spaced targets was maintained using a
novel repulsion mechanism.

Future work should consider extending the approach to the
full 3 dimensional case and investigation of a more accurate
source point spread model. Furthermore, the multi-traadtr
ing framework should be relaxed to consider the recognition
of and response to extended speech silences explicitlyirwith
the filter.
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