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Abstract Accurate navigation is a fundamental requirement for robotic systems—
marine and terrestrial. For an intelligent autonomous system to interact effectively
and safely with its environment, it needs to accurately perceive its surroundings.
While traditional dead-reckoning filtering can achieve extremely high performance,
the localization accuracy decays monotonically with distance traveled. Other ap-
proaches (such as external beacons) can help; nonetheless, the typical prerogative is
to remain at a safe distance and to avoid engaging with the environment. In this
chapter we discuss alternative approaches which utilize onboard sensors so that
the robot can estimate the location of sensed objects and use these observations to
improve its own navigation as well its perception of the environment. This approach
allows for meaningful interaction and autonomy. Three motivating autonomous
underwater vehicle (AUV) applications are outlined herein. The first fuses external
range sensing with relative sonar measurements. The second application localizes
relative to a prior map so as to revisit a specific feature, while the third builds an
accurate model of an underwater structure which is consistent and complete. In
particular we demonstrate that each approach can be abstracted to a core problem
of incremental estimation within a sparse graph of the AUV’s trajectory and the
locations of features of interest which can be updated and optimized in real time on
board the AUV.
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8.1 Introduction

In this chapter we consider the problem of simultaneous localization and mapping
(SLAM) from a marine perspective. Through three motivating applications,

:
we

demonstrate that a large class of autonomous underwater vehicle (AUV) missions
can be generalized to an underlying set of measurement constraints which can
then be solved using a core pose graph SLAM optimization algorithm known as
incremental smoothing and mapping (iSAM) [40].

Good positioning information is essential for the safe execution of an AUV
mission and for effective interpretation of the data acquired by the AUV [26, 47].
Traditional methods for AUV navigation suffer several shortcomings. Dead reckon-
ing and inertial navigation systems (INS) are subject to external disturbances and
uncorrectable drift. Measurements from Doppler velocity loggers can be used to
achieve higher precision, but position error still grows without bound. To achieve
bounded errors, current AUV systems rely on networks of acoustic transponders or
surfacing for GPS resets, which can be impractical or undesirable for many missions
of interest.

The goal of SLAM is to enable an AUV to build a map of an unknown
environment and concurrently use that map for positioning. SLAM has the potential
to enable long-term missions with bounded navigation errors without reliance on
acoustic beacons, a priori maps, or surfacing for GPS resets. Autonomous mapping
and navigation is difficult in the marine environment because of the combination of
sensor noise, data association ambiguity, navigation error, and modeling uncertainty.
Considerable progress has been made in the past 10 years, with new insights into
the structure of the problem and new approaches that have provided compelling
experimental demonstrations.

To perform many AUV missions of interest, such as mine neutralization and
ship hull inspection, it is not sufficient to determine the vehicle’s trajectory in post
processing

:::::::::::::
post-processing after the mission has been completed. Instead, mission

requirements dictate that a solution is computed in real-time,
:::
real

::::
time

:
to enable

closed-loop position control of the vehicle. This requires solving an ever growing

:::::::::::
ever-growing optimization problem incrementally by only updating quantities that
actually change instead of recomputing the full solution—a task for which iSAM is
well suited.

Each application presents a different aspect of smoothing-based SLAM:

• Smoothing as an alternative to filtering: the use of non-traditional
:::::::::::
nontraditional

acoustic range measurements to improve AUV navigation [18] ;
• Re-localizing

::::::::::
Relocalizing

:
in an existing map: localizing and controlling an AUV

using natural features using a forward looking sonar [24] ; and
• Loop closure used to bound error and uncertainty: combining AUV motion

estimates with observations of features on a ship’s hull to produce accurate hull
reconstructions [35] .
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A common theme for all three applications is the use of pose graph representations
and associated estimation algorithms that exploit the graphical model structure of
the underlying problem.

First we will overview the evolution of the SLAM problem in the following
section.

8.2 Simultaneous Localization and Mapping

The earliest work which envisaged robotic mapping within a probabilistic frame-
work was the seminal paper by Smith et al. [69]. This work proposed using
an extended Kalman filter (EKF) to estimate the first and second moments of
the probability distribution of spatial relations derived from sensor measurements.
Moutarlier and Chatila provided the first implementation of this type of algorithm
with real data [55], using data from a scanning laser range finder mounted on a
wheeled mobile robot operating indoors. The authors noted that the size of the state
vector would need to grow linearly with the number of landmarks and that it was
necessary to maintain the full correlation between all the variables being estimated,
thus

:
;
::::
thus,

:
the algorithm scales quadratically with the number of landmarks [11].

The scalability problem was addressed by a number of authors. The sparse
extended information filter (SEIF) by Thrun et al. [74] uses the information form
of the EKF in combination with a sparsification method. One of the downfalls of
that approach was that it resulted in over-confident

:::::::::::
overconfident estimates. These

issues were addressed in the exactly sparse delayed-state filters (ESDFs) by Eustice
et al. [14, 15] and later with the exactly sparse extended information filter (ESEIF)
by Walter et al. [79].

Particle filters have also been used to address both the complexity and the data
association problem. The estimates of the landmark locations become independent
when conditioned on the vehicle trajectory. This fact was used by Montemerlo et
al. [54] to implement FastSLAM. The main drawback of particle filters applied to
the high dimensional

::::::::::::::
high-dimensional trajectory estimation is particle depletion. In

particular,
:
when a robot completes a large exploration loop and decides upon a loop

closure, only a small number of particles with independent tracks will be retained
after any subsequent re-sampling

:::::::::
resampling step.

In purely localization tasks (with static prior maps) particle filters have been
successful. Monte Carlo localization allowed the Minerva robotic museum guide
to operate for 44 km over 2 weeks [72]. More recently it has been used by Nuske et
al. to localize an AUV relative to a marine structure using a camera [60], exploiting
GPU-accelerated image formation to facilitate large particle sets.

Filtering approaches have some inherent disadvantages when applied to the
SLAM problem: Measurements

:::::::::::
measurements are linearized only once based on the

current state estimate—at the time the measurement is added. Further, it is difficult
to apply delayed measurements or to revert a measurement once it has been applied
to the filter. The Atlas framework by Bosse et al. [6] addresses these issues by
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combining local sub-maps
:::::::
submaps and a nonlinear optimization to globally align

the sub-maps. Each sub-map
::::::::
submaps.

::::
Each

:::::::
submap

:
has its own local coordinate

frame,
:
so the linearization point cannot deviate as far from the true value as in the

case of global parameterization.

8.2.1 Pose Graph Optimization using
::::::
Using Smoothing and

Mapping

As the field has evolved, full SLAM solutions [48, 73] have been explored to
overcome the linearization errors that are the major source of sub-optimality

:::::::::::
suboptimality

:
of filtering-based approaches. Full SLAM includes the complete

trajectory into the estimation problem rather than just the most recent state.
This has led to the SLAM problem being modeled as a graph where the nodes
represent the vehicle poses and optionally also landmarks. The edges in this graph
are measurements that put constraints between these variables. By associating
probability distributions to the constraints, the graph can be interpreted as a Bayes
network.

Under the assumption that measurements are corrupted by zero-mean Gaussian
noise, the maximum likelihood solution of the joint probability distribution is found
by solving a nonlinear least-squares

::::
least

::::::
squares

:
problem. Many iterative solutions

to the SLAM problem have been presented, such as stochastic gradient descent
[29, 61], relaxation [10], preconditioned conjugate gradient [44]

:
, and loopy belief

propagation [64].
Faster convergence is provided by direct methods that are based on matrix

factorization. Dellaert and Kaess [9] introduced the square root smoothing and
mapping (SAM) algorithm , using matrix factorization to solve the normal equations
of the sparse least-squares

:::
least

:::::::
squares problem. Efficiency is achieved by relating

the graphical model to a sparse matrix in combination with variable reordering
for maintaining sparsity. Similar methods are used by [45, 46], and more efficient
approximate solutions include [28].

The aforementioned incremental smoothing and mapping algorithm provides
an efficient incremental solution [40]. In iSAM the matrix factorization is in-
crementally updated using Givens rotations, making the method better suited for
on-line

:::::
online operations. In addition they developed an efficient algorithm for

recovering parts of the covariance matrix [37], which is useful for on-line
:::::
online

data association decisions.
Recently, further exploration of the connection between graphical models and

linear algebra allowed a fully incremental formulation of iSAM. The Bayes tree
data structure [38] can be considered as an intermediate representation between the
Cholesky factor and a junction tree. While not obvious in the matrix formulation,
the Bayes tree allows a fully incremental algorithm, with incremental variable
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Fig. 8.1 Factor graph for the pose graph formulation of the SLAM problem. The large circles

::::::::
large circles

:
are variable nodes, here the AUV states xi. The small solid circles

:::::::::::::
small solid circles

are factor nodes: relative pose measurements ui, absolute pose measurements ψi, a prior on the first
pose p0:, and loop closure constraints c j

re-ordering and fluid re-linearization
::::::::
reordering

::::
and

::::
fluid

::::::::::::
relinearization. The result-

ing sparse nonlinear least-squares
::::
least

:::::::
squares solver is called iSAM2 [39].

Using a nonlinear solver for the full SLAM problem overcomes the problems
caused by linearization errors in filtering methods, and it is also the case that
estimation of the full trajectory results in a sparse estimation problem [9]. It is
not necessary to explicitly store the correlation between all the landmarks, making
these methods very efficient. One downside is that the problem grows with time (or
at least distance traveled) instead of the size of the environment, although the rate
of growth is not significant for the applications discussed in this chapter.

8.2.2 Mathematical Summary

In this section,
:

we will briefly present the mathematical formulation of the full
SLAM problem as a nonlinear least squares optimization. The full SLAM problem
can be described as a constantly growing factor graph. A factor graph is a bipartite
graph consisting of variable nodes and factor nodes, connected by edges. The factor
graph represents a factorization of a function f (X) over some variables X = {xi}N

i=0::

f (X) =
K

∏
k=1

fk(Xk), (8.1)

where Xk denotes the subset of variables involved in the kth factor. The factor
nodes F = { fk}K

k=1 represent constraints involving one or more variables. Each edge
connects one factor node with one variable node.

For our navigation setting, consider the simple factor graph example in Fig. 8.1,
where the variable nodes x1 . . . xN represent the vehicle states sampled at discrete
times, together forming the vehicle trajectory. Here, the factor nodes F are
partitioned into multiple types that represent relative pose constraints ui between
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consecutive poses, absolute pose constraints ψi on individual poses,
:

and loop
closure constraints c j on arbitrary pairs of poses form these measurements.

When assuming Gaussian measurement noise
:
, we arrive at a nonlinear least-squares

::::
least

::::::
squares problem. Under the Gaussian assumption, a measurement zk is predicted
based on the current estimate Xk through a deterministic function hk and with added
zero-mean Gaussian measurement noise vk with covariance Λk::

zk = hk(Xk)+ vk vk ∼N (0,Λk). (8.2)

Hence, the factor fk to encode the actual measurement zk is defined as

fk(Xk) ∝ exp
(
−1

2
∥hk(Xk)− zk∥2

Λk

)
, (8.3)

where ∥x∥2
Σ := x⊤Σ−1x. To find the nonlinear least-squares

::::
least

::::::
squares

:
solution

X̂ we make use of the monotonicity of the logarithm function for converting the
factorization into a sum of terms:

X̂ =argmax
X

K

∏
k=1

fk(Xk) (8.4)

=argmin
X
− log

K

∏
k=1

fk(Xk) (8.5)

=argmin
X

K

∑
k=1
− log fk(Xk) (8.6)

=argmin
X

K

∑
i=k
∥hk(Xk)− zk∥2

Λk
. (8.7)

Standard Gauss-Newton [27]based
::::::
-based solutions, such as Levenberg-Marquardt

or Powell’s dog leg, repeatedly linearize and solve this sparse nonlinear least-squares

::::
least

::::::
squares

:
problem. By stacking the linearized equations, a sparse matrix A is

obtained whose block structure mirrors the structure of the factor graph

δ X̂ = argmin
δX

∥AδX−b∥2 (8.8)

The vector b contains the measurements and residuals; details are given in
[9]. This linear system can be solved by matrix factorization and forward- and
backsubstitution

::::::
forward

::::
and

:::::
back

::::::::::
substitution. After each iteration the current

estimate is updated by X̂ ← X̂ + δ X̂ . The new estimate is then used as new
linearization point, and the process is iterated until convergence.

iSAM [39, 40] provides an incremental solution to Gauss-Newton style meth-
ods, in particular Powell’s dog leg [66]. When new measurements are received,
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this approach updates the existing matrix factorization rather than re-calculating

::::::::::
recalculating

:
the nonlinear least squares system anew each iteration. For a detailed

account of this process, the reader is referred to the original papers.

8.2.3 Data Association

A fundamental problem in feature-based SLAM is the correct association of point
measurements from different time steps to one another. Given a series of raw laser,
camera,

:
or sonar measurements, the challenge is to identify the observed features

which originated from the same physical entity. Knowledge of this data association
provides a set of valid measurement constraints. As explained previously, these
constraints can be optimized efficiently, however;

::::::::
however,

:
this data association

problem must first be solved.
Data association in its most generalized form is a well studied

::::::::::
well-studied

problem, for example [59]. Where the measurements are indistinct, noisy
:
,
:
or

contradictory, there remains the possibility of association errors. A core weakness of
current SLAM approaches is brittleness and sub-optimality

:::::::::::
suboptimality

:
resulting

from these errors becoming ‘baked into’
::::::
“baked

:::::
into” the optimization problem.

Currently, the predominant approach is to avoid adding such associations if not
absolutely confident in their correctness—instead assuming access to informative
sensor data at a later time. That is the approach we are taking for ship hull inspection
in Sect. 8.6, where navigation uncertainty of the on-board

::::::
onboard

:
sensors is low,

allowing for many minutes of open loop
::::::::
open-loop navigation without significant

loss of accuracy.
Discarding uninformative sensor information unfortunately is not a luxury avail-

able in many AUV applications in which interesting features are often rare. While AQ: Please check
if edit to sentence
starting “While
approaches which
maintain...” is okay.

approaches which maintain multiple data association hypothesizes
:::::::::
hypotheses for

an extended time have been proposed, the exponential growth in the size of
a hypothesis tree cannot be supported indefinitely. In Sect. 8.5 we present an
application which tackles this problem in a typical marine environment for a
low cost

:::::::
low-cost AUV with significant navigation uncertainty. Data association

decisions are taken just after a feature has left the field of view so as to have
access to all available observations of a particular feature before making the critical
association decision.

While a detailed discussion of the field of data association is outside the scope of
this work, it remains a problem specific to each problem or application.
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8.3 Navigation in Marine Environments

In the following sections we will motivate the use of the smoothing and mapping
approach by way of three separate autonomous marine applications. In particular

:
,

we will demonstrate that the estimation problem at the heart of each application can
be reduced to a set of navigation and perception constraints which can be optimally,
incrementally,

:
and efficiently solved using the iSAM algorithm.

First we will give a more general overview of SLAM in marine environments.
The modern AUV contains proprioceptive sensors such as compasses, fiber optic

::::::::
fiber-optic

:
gyroscopes (FOG)

:
, and Doppler velocity loggers (DVL) [83]. The sensor

output of these senors
::::::
sensors

:
is fused together using navigation filters, such as

the EKF, to produce a high quality
::::::::::
high-quality estimate of the AUV position and

uncertainty. This estimate is then used by the AUV to inform on-board decision
making

::::::
onboard

::::::::::::::
decision-making logic and to adaptively complete complex survey

and security missions. Kinsey et al. provides survey of state-of-the-art approaches
to AUV navigation [43].

Acoustic ranging has been widely used to contribute to AUV navigation [85,86].
Long baseline (LBL) navigation was initially developed in the 1970’s

:::::
1970s [31,34]

and is commonly used by industrial practitioners [52]. It requires the installation
of stationary beacons at known locations surrounding the area of interest which
measure round-trip acoustic time of flight before triangulating for 3D

::::
3-D position

estimation. Operating areas are typically restricted to a few square kilometers.
Ultra short

::::::::
Ultrashort baseline (USBL) navigation [49] is an alternative method

which is typically used for tracking an underwater vehicle’s position from a surface
ship. Range is measured via time of flight to a single beacon,

:
while bearing is

estimated using an array of hydrophones on the surface vehicle transducer. Overall
position accuracy is dependent on many factors, including the range of the vehicle
from the surface ship, the motion of the surface ship, and acoustic propagation
conditions.

In addition, many modern AUVs have multiple exteroceptive sensors. Side-scan
sonar, initially developed by the US Navy, has been widely used for ship, ROV

:
,

and AUV survey since its invention in the 1950s. More recently, forward looking
sonars, with the ability to accurately position a field of features in two dimensions,
have also been deployed for a variety of applications such as 3-D reconstruction
[32] and harbor security [13,41,50,65]. In scenarios in which water turbidity is not
excessively high, cameras have been used to produce accurate maps of ship-wrecks

:::::::::
shipwrecks

:
and underwater historical structures, for example,

:
the mapping of RMS

Titanic [16] and of Iron Age shipwrecks [3].
These more recent applications have a common aspect; to maintain consistency

of sensor measurements over the duration of an experiment, smoothing on-line

:::::
online of an AUV’s trajectory and the location of measured features is

::
are necessary.

We will now demonstrate how SLAM smoothing in a marine environment is applied
in practice.
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Fig. 8.2 Optimizing the
entire set of vehicle poses and
target observations facilitates
explicit alignment of sonar
mosaics and understanding of
the motion of the AUV during
the mission. This allows for
reactive decision making in
the water—as opposed to
post-processing which is
common currently. In this
figure this optimization
allows three different
observations of a single target
to be explicitly aligned

8.4 Smoothing: Cooperative Acoustic Navigation

The first application we will consider is that of cooperative acoustic navigation. In
this application non-traditional

:::::::::::
nontraditional

:
sources of acoustic range measure-

ments can be used to improve the navigation performance of a group of AUVs with
aim of achieving bounded error or at the least reducing the frequency of GPS fix
surfacings.

Within the context of the data association discussion in Sect. 8.2.3, this appli-
cation is much simpler in that the acoustic range measurements are paired with
the location of the surface beacon originating them—by design. This avoids data
association entirely.

Following on from traditional LBL navigation, the moving long baseline (MLBL)
concept proposed two mobile autonomous surface vehicles (ASVs) aiding an AUV
using acoustic modem ranging. This was proposed by Vaganay et al. [76] and
extended by Bahr et al. [1, 2]. This concept envisaged the ASVs transmitting
acoustic modem messages containing their GPS positions paired with a modem-
estimated range to the AUV which could then uniquely fix its position while
maintaining full mobility—which is not afforded by typical LBL positioning.

More recent research has focused on utilizing only a single surface vehicle to
support an AUV using a recursive state estimator such as the extended Kalman filter
[19] or the distributed extended information filter (DEIF) [82].

For many robotic applications, however, estimating the vehicle’s entire trajectory
as well as the location of any observed features is important (for example

:::
e.g.,

:
in

survey missions). As mentioned previously, the EKF has been shown to provide an
inconsistent SLAM solution due to information lost during the linearization step
[36]. Furthermore, our previous work, [22], demonstrated (off-line) the superior
performance of NLS methods in the acoustic ranging problem domain versus
both an EKF and a particle filtering implementation—although requiring growing
computational resources. For these reasons we present here an application in which
iSAM is used for full pose trajectory estimation using acoustic range data.
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a b

Fig. 8.3 The vehicles used in our experiments:
::
(a)

::
As

:
the Hydroid Remus 100 AUV was supported

by
:::::
travels

:::::
through

:
the MIT Scout ASV or by

::::
water,

:
the research vessel—the Steel Slinger

:::::::
side-scan

::::
sonar

:::::
images

:::::::
laterally

:::
with

::::::
objects

::
on

:::
the

:::::
ocean

::::
floor

:::::
giving

:::::
strong

::::::
returns.

::
(b)

::
A
::::::::

top-down

:::::::
projection

::
of

:::
the

::::::
side-scan

:::::
sonar

::
for

::
a
:::
120

:
m
::

of
::::::

vehicle
:::::
motion

::::
(left

::
to

::::
right)

:
.
:::
The

:::::
lateral

::::
scale

:
is
::
30

:
m

::
in

:::
each

:::::::
direction

::::
which

:::::
yields

:
a
::
1:1

:::::
aspect

::::
ratio.

::::
Note

:::
that

:
in
:::

this
::::
case

:::::
targets

:
1
:::
and

:
2
::::
have

:::
been

:::::::
observed

::::
twice

:::
each

::::
after

:
a
:::
turn

Additionally we demonstrate that mapping of bottom targets (identified in side-
scan sonar imagery) can be integrated within the same optimization framework.
The effect of this fusion is demonstrated in Fig. 8.2. This figure demonstrates the
alignment of sidescan

:::::::
side-scan

:
sonar mosaics from three separate observations

of the same feature. Without optimizing the entire global set of constraints,
:

the
resultant data reprojection would be inconsistent.

As an extension, we demonstrate the ability to combine relative constraints across
successive missions, enabling multi-session AUV navigation and mapping, in which
data collected in previous missions is seamlessly integrated on-line

:::::
online with data

from the current mission on-board
::
on

:::::
board the AUV.

8.4.1 Problem Formulation

The full vehicle state is defined in three Cartesian and three rotation dimensions,
[x,y,z,ϕ ,θ ,ψ]. Absolute measurements of the depth z, roll ϕ ,

:
and pitch θ , are

measured using a water pressure sensor and inertial sensors. This leaves three
dimensions of the vehicle to be estimated in the horizontal plane: x,y,ψ .

The heading is instrumented directly using a compass,
:
and this information is

integrated with inertial velocity measurements to propagate estimates of the x and y
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position1..1 This integration is carried out at a high frequency (∼ 10 Hz) compared
to the exteroceptive range and sonar measurements (∼ 1 z).

The motion of the vehicle at time step i is described by a Gaussian process model
as follows

:
:

ui = hu(xi−1,xi)+wi wi ∼ N(0,Σi) (8.9)

where xi represents the 3-D vehicle state (as distinct from the dimension x above).
Note that while the heading is directly estimated using a compass, we use this
estimate only as a prior within the smoothing framework. In this way the smoothed
result will produce a more consistent combined solution.

8.4.1.1 Acoustic Ranging

Instead of either LBL or USBL, our work aims to utilize acoustic modems, such
as the WHOI Micro-Modem [25], which are already installed on the majority of
AUVs for command and control. The most accurate inter-vehicle ranging is through
one-way travel time

:::::::::
travel-time

:
ranging with precisely synchronized clocks, for

example,
:
using the design by Eustice [17], which also allows for broadcast ranging

to any number of vehicles in the vicinity of the transmitting vehicle. An alternative
is round trip

::::::::
round-trip ranging, which

:
, while resulting in more complexity during

operation and higher variance, requires no modification of existing vehicles.
Regardless of the ranging method, the range measurement r j,3D, a 2-D estimate

of the position of the transmitting beacon, g j = [xg j,yg j], and associated covariances
will be made known to the AUV at intervals on the order of 10–120 seconds. Having
transformed the range to a 2-D range over ground r j (using the directly instrumented
depth), a measurement model can be defined as follows

:
:

r j = hr(x j,b j)+µ j µ j ∼ N(0,Ξ j) (8.10)

where x j represents the position of AUV state at that time. GPS measurements of the
beacon position are assumed to be distributed via a normal distribution represented
by Φ j.

Comparing the on-board
:::::::
onboard position estimates of the AUV and the ASV

in the experiments in Sect. 8.4.2, round trip
::::::::
round-trip

:
ranging is estimated to have

a variance of approximately 7 m, compared with a variance of 3 m for one-way
ranging reported in [22]. An additional issue is that with the ranging measurement
occurring as much as 10 s before the position and range are transmitted to the AUV,
an acausal update of the vehicle position estimate is required.

1In our case this integration is carried out on a separate proprietary vehicle control computer and
the result is passed to the payload computer.
1
:
In

:::
our

:::
case

:::
this

::::::::
integration

::
is

:::::
carried

::
out

:::
on

:
a
::::::
separate

::::::::
proprietary

:::::
vehicle

:::::
control

::::::::
computer,

:::
and

::
the

::::
result

::
is

:::::
passed

::
to

::
the

::::::
payload

:::::::
computer.
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The operational framework used by Webster et al. [81, 82] is quite similar to
ours. Their approach is based on a decentralized estimation algorithm that jointly
estimates both the AUV position and that of a supporting research vessel using a
distributed extended information filter. Incremental updates of the surface vehicle’s
position are integrated into the AUV-based portion of the filter via a simple and
compact addition which, it is assumed, can be packaged within a single modem
data packet.

This precise approach hypothesizes the use of a surface vehicle equipped with
a high accuracy gyro-compass

:::::::::::
gyrocompass

:
and a survey-grade GPS (order of

0.5 m accuracy). Furthermore, as described in [81], the approach can be vulnerable
to packet loss, resulting in missing incremental updates which would cause the
navigation algorithm to fail. While re-broadcasting

::::::::::::
rebroadcasting

:
strategies to

correct for such a failure could be envisaged, it is likely that significant (scarce)
bandwidth would be sacrificed, making multi-vehicle operations difficult.

Our approach instead aims to provide independent surface measurements to the
AUV in a manner that is robust to inevitable acoustic modem packet loss. The
goal is a flexible and scalable approach that fully exploits the one-way travel time

:::::::::
travel-time ranging data that the acoustic modems enable. The solution should be
applicable to situations in which only low-cost GPS sensors are available on the
ASVs or gateway buoys , to provide maximum flexibility.

8.4.1.2 Side-Scan Sonar

To demonstrate the compatibility of this approach with typical side-scan sonar
surveys, the algorithm was extended to support relative observations from the sonar
in a SLAM framework.

Side-scan sonar is a common sonar sensor often used for ocean sea-floor
mapping. As the name suggests, the sonar transducer device scans laterally when
towed behind a ship or flown attached to an AUV through the water column. A
series of acoustic pings are transmitted

:
, and the amplitude and timing of the returns

combined with speed of sound in water is
:::
are used to determine the existence of

features located perpendicular to the direction of motion.
(a) As the AUV travels through the water the side-scan sonar images laterally

with objects on the ocean floor giving strong returns. (b) A top down projection of
the side-scan sonar for a 120m of vehicle motion (left to right). The lateral scale is
30m in each direction which yields a 1:1 aspect ratio. Note that in this case Targets
1 and 2 have been observed twice each after a turn

By the motion of the transducer through the water column, two-dimensional
images can be produced which survey the ocean floor and features on it. See Fig. 8.3AQ: “Figures 8.3, 8.4

and 8.5” have been
renumbered to appear
in sequence. Please
check.

for an example side-scan sonar image. These images, while seemingly indicative of
what exists on the ocean floor, contain no localization information to register them
with either a relative or global position. Also it is often difficult to repeatedly detect
and recognize features of interest,

:
; for example, Fig. 8.3 illustrates two observations

each of two different targets of interest. Target 1 (a metallic icosahedron) appears
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differently in its two observations. Also , targets are typically not identified using
the returned echoes from the target itself , but by the shadow cast by the target [12].

For these reasons we must be careful in choosing side-scan sonar features
for loop closure. Appearance-based matching techniques, such as FABMAP [8],
would most likely encounter difficulties with acoustic imagery. Metric-based feature
matching requires access to accurate, fully optimized position and uncertainty
estimates of the new target relative to all previously observed candidate features.
For these reasons, we will use iSAM to optimize the position and uncertainty of the
entire vehicle trajectory, the sonar target positions, as well as all the beacon range
estimates mentioned in Sect. 8.4.1.1.

The geometry of the side-scan sonar target positioning is illustrated in Fig. 8.3.
Distance from the side-scan sonar to a feature corresponds to the slant range, dm,3D,
while the distance of the AUV off the ocean floor (altitude, am) can be instrumented.
We will assume the ocean floor to be locally flat which allows the slant range to
be converted into the horizontal range, resulting in the following relative position
measurement:

:

dm,2D =
√

d2
m,3D−a2

m (8.11)

ρm = ±π/2 (8.12)

where Ψm is the relative bearing to the target defined from the front of the
vehicle anti-clockwise

:::::::::::
anticlockwise. These two measurements paired together give

a relative position constraint, zm = [dm,2D,ρm] for an observation of target sm. This
target can either be a new, previously unseen target or a re-observation

:::::::::::
reobservation

of an older target. In the experiments in Sect. 8.4.2 this data association is done
manually

:
, while in future work we will aim to do this automatically as in [70]. The

resultant measurement model will be as follows
:
:

zm = hz(xm,sm)+ vm vm ∼ N(0,Λm) (8.13)

where xm is the pose of the AUV at that time. In effect, repeated observations
of the same sonar target correspond to loop-closures

::::
loop

:::::::
closures. Such repeated

observations of the same location allow uncertainty to be bounded for the navigation
between the observations.

8.4.1.3 Integration into the SAM Framework

Using the set of J acoustic ranges, M sidescan
:::::::
side-scan

:
sonar constraints as well

as the N incremental inertial navigation constraints, the optimization problem is
formulated as follows

:
:
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Fig. 8.4 Factor graph formulation of the measurement system showing vehicle states xi, surface
beacons b j:, and sonar targets sk. Also illustrated are the respective constraints: range r j in the case
of the surface beacons and range and relative bearing zm in the case of sonar targets. Ranges are
paired with surface beacon measurements

:
, while multiple observations of a particular sonar target

is in effect a loop closure. The initial pose is constrained using an initial prior p0 using the GPS
position estimate when the AUV dived

X̂ =argmin
X

N

∑
i=1
∥hu(xi−1,xi)− ûi∥2

Σi

+
J

∑
j=1

∥∥b j− ĝ j
∥∥2

Φ j
+

J

∑
j=1

∥∥hr(x j,b j)− r̂ j
∥∥2

Ξ j

+
M

∑
m=1
∥hz(xm,sm)− ẑm∥2

Λm
(8.14)

In summary, x j represents the vehicle pose when measuring the range r j to beacon
b j, xm is the pose when observing sonar target sm at relative position zm:

, and finally
ui is the control input between poses xi−1 and xi. Unlike the simple derivation
outlined in Sect. 8.2.2, the beacon and target positions require explicit insertion into
the problem factor graph.

The corresponding factor graph is illustrated by Fig. 8.4.

8.4.2 Experiments

A series of experiments were carried out in St. Andrews Bay in Panama City, Florida
to demonstrate this proposed approach. A Hydroid REMUS 100 AUV carried out
four different missions while collecting side-scan sonar data (using a Marine Sonics

:::::
Sonic transducer) as well as range and GPS position information transmitted from
either the Scout ASV (Fig. 8.5) or a deck-box

::::
deck

:::
box

:
on the 10 m support vessel.

In each case,
:

a low-cost Garmin 18x GPS Sensor
::::::
sensor was used to provide GPS

position estimates.
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a

b

Fig. 8.5
::

The
::::::
vehicles

::::
used

:
in
:::

our
:::::::::
experiments:

:::
the

::::::
Hydroid

::::::
REMUS

:::
100

::::
AUV

:::
was

:::::::
supported

:::
by

::
the

::::
MIT

::::
Scout

::::
ASV

::
or

::
by

::
the

::::::
research

:::::::::
vessel—the

:::::::::
Steel Slinger

The Kearfott T16 INS, connected to the REMUS front-seat computer, fused its
FOG measurements with those of a Teledyne RDI DVL, an accelerometer and a GPS
sensor to produce excellent navigation performance. For example after a 40 min
mission the AUV surfaced with a 2 m GPS correction - drift

::::::::::::::
correction—drift of the

order of 0.1 % of the distance traveled.
The AUV did not have the ability to carry out one-way ranging

:
,
:
and as a result

:
,

two-way ranging was used instead. The navigation estimate was made available to a
backseat computer which ran an implementation of the algorithm in Sect. 8.2.2 (less
the sonar portion).

Given the variance of two-way ranging (∼7 m) and the accuracy of the vehicle
INS, it would be ambitious to expect to demonstrate significant improvement
using cooperative ranging-assisted navigation in this case. For this reason these
missions primarily present an opportunity to validate and demonstrate the system
with combined sensor input and multiple mission operation.

For simplicity,
:

we will primarily focus on the longest mission—Mission 3 in
Fig. 8.7—before discussing the extension to successive missions in Sect. 8.4.2.3.
The missions are numbered chronologically.
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8.4.2.1 Single Mission

During Mission 3, the AUV navigation data was combined with the acoustic
range/position pairs and optimized on-line on-board

:::::
online

::
on

:::::
board

:
the AUV using

iSAM to produce a real-time estimate of its position and uncertainty. After the
experiments, sonar targets were manually extracted from the Marine Sonics

:::::
Sonic

data file and used in combination with the other navigation data to produce the
combined optimization illustrated in Fig. 8.6. (The two remaining applications of
this chapter describe on-line

:::::
online

:
algorithms for sonar processing.)

An overview of the mission is presented in Fig. 8.7 as well as quantitative results
from the optimization where 3σ uncertainty was determined using 3

√
σ2

x +σ2
y .

Starting at (400, 250), the vehicle carried out a set of four re-identification (RID)
patterns. These overlapping patterns are designed to provide multiple opportunities
to observe objects on the ocean floor using the side-scan sonar. Typically this
mission is carried out after having first coarsely surveyed the entire ocean floor. In
this case two artificial targets were placed at the center of patterns 2 and 3 and were
detected between 15–24 min (6 times) and 27–36 min (7 times),

:
respectively. The

surface beacon, in this case the support vessel on anchor at (400, 250), transmitted
round-trip ranges to the AUV on a 20 second

:::::::::
20-second cycle.

8.4.2.2 Analysis

A quantitative analysis of the approach is presented in Fig. 8.7. The typical case
(black) of using only dead reckoning for navigation results in ever increasing

::::::::::::
ever-increasing

:
uncertainty. The second approach (blue) utilizes target re-identifications

in the sonar data but not acoustic range measurements. This temporarily halts the
growth of uncertainty

:
, but monotonic growth continues in their absence.

Acoustic ranging by comparison (red) can achieve bounded error navigation—
in this case with a 3σ -bound of about 2 m. As the AUV’s mission encircled the
support vessel, sufficient observability was achieved to properly estimate the AUV’s
state—which results in the changing alignment of the uncertainty function. However
performance deteriorates when the relative positions of the vehicles do not vary
significantly (such as during patterns 3–4; 40–53 min).

Finally, the best performance is observed when the sonar and acoustic ranging
data are fully fused. Interestingly, the two modalities complement each other: during
re-identification patterns 2 and 3, sonar target observations bound the uncertainty
while the AUV does not move relative to the support vessel. Later the vehicle transits
between patterns—allowing for the range observability to improve.

In summary, the combination of the on-board, sonar
:::::::
onboard,

::::::
sonar, and ranging

sensor measurements allows for on-line
:::::
online

:
navigation to be both globally

bounded and locally drift-free.
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Fig. 8.6 An overview of the optimized trajectory estimates of the AUV
:
((blue)

:
) and the surface

vehicle ((red)
:
), as well as the estimated position of three sonar targets ((magenta)

:
) for two of

the missions. The mutually observed feature in the South-East
::::::
southeast

:
allows for the joint

optimization of the two missions. This corresponds to Target
::::
target

:
3 in Fig. 8.7. The red lines

::::::
red lines indicate the relative vehicle positions during ranging

:
, while the ellipses

:::::
ellipses indicate

position uncertainty

8.4.2.3 Multiple Missions

In this section we will describe how the algorithm has been extended to combine the
maps produced by multiple successive AUV missions within a single optimization
framework. As mentioned in previous sections, it is advantageous to provide a robot
with as much prior information of its environment before it begins its mission, which
it can then improve on as it navigates.

Space considerations do not permit a full analysis of this feature, but briefly:
during Missions 1 and 2

:
,
:
surface information was transmitted from an autonomous

surface vehicle, MIT’s Scout kayak (shown in Fig. 8.5), which moved around the
AUV so as to improve the observability of the AUV, as previously demonstrated in
[22]. In Mission 4, as in Mission 3, the support vessel was instead used—although in
this case,

:
the support vessel moved from a location due east of the AUV to another

location due west of the AUV, as illustrated in Fig. 8.6. This demonstrates that a
basic maneuver by the support vessel is sufficient to ensure mission observability.
The mission started at (350, 200).

Figure 8.7 illustrates the inter-mission
::::::::::
intermission

:
connectivity. This demon-

strates that the two targets were observed numerous times during the missions,
which allows us to combine the navigation across all of the missions into a single
fully optimized estimate of the entire operation area.

While such an approach could possibly be carried out for several vehicles
operating simultaneously, sharing minimal versions of their respective maps [21],
it is unclear if the acoustic bandwidth available would be sufficient to share sonar
target observation thumbnails to verify loop closure.
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Fig. 8.7 (a):
::
(a)

:
Navigation uncertainty for Mission 3 for four different algorithm configurations.

Acoustic ranging alone can bound error growth—subject to observability ((red);
:
), while the full

sonar and acoustic fusion produces the solution with minimum uncertainty
:
((magenta)). (b):

::
(b)

During the four (consecutive) missions, range measurements (represented by the red lines
::::::
red lines)

were frequently received from the ASV (Mission 1 and 2) or the research vessel (Mission 3 and
4). Occasionally targets were detected in the side-scan sonar data. Repeated observations of the
same target (illustrated in magenta) allow for a SLAM loop closure and for inter-loop

:::::::
interloop

uncertainty to be bounded

8.4.3 Discussion

In this section we presented a method for the fusion of on-board
::::::
onboard

:
proprio-

ceptive navigation and relative sonar observations with acoustic ranges transmitted
from an autonomous surface vehicle. It allows for operation for many hours in
real-time

:::
real

::::
time

:
for missions of the type described above. Factors resulting in

a reduction in performance of this approach are as follows: (1) infrequent ranging
:
,

(2) ranging from the same relative direction,
::::
and (3) sonar targets not being present

or being infrequently observed. We estimate that the bounded error for a non-
FOG enabled AUV with several percent drift would be of the order of 3–5 m
(depending on the relative geometry and frequency of the one-way travel-time range
measurements).

The specific acoustic ranging problem defined above is one problem in a wider
class of problems each of which is defined by the connectivity of the fleet of vehicles
and the direction of information flow (which result in inter-vehicle correlations
being created). A recent overview of the various sub-problems

::::::::::
subproblems

:
is

presented in [78].

8.5 Localization Using a Prior Map

In this second application we consider the challenge of using a prior map (generated
using techniques described above) as part of a greater mission to neutralize mines in
very shallow water—a task that has traditionally been carried out by human divers.
The potential for casualties associated with this method of mine countermeasures
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Fig. 8.8 iRobot Ranger—a low cost
::::::
low-cost

:
single-man portable AUV

(MCM) motivates the use of unmanned systems to replace human divers. While
tethered robotic vehicle could be remotely controlled to perform MCM, a solution
using untethered AUVs offers numerous advantages.

When mission requirements dictate that vehicle cost must be extremely low, the
navigation problem for target reacquisition is quite challenging. The crux of the
problem is to achieve good navigation performance despite the use of sensors with
very low cost.

Resultantly the application unfolds within the context of a multiple-step effort,
involving a variety of vehicles and technologies. The mission assumes a target
field of moored and bottom mines along a shoreline. In this scenario, a remote
environmental measuring unit (REMUS) AUV [77] (Fig. 8.5 a) performs a survey
of the operating area, scouting the operating area

:
, and collecting data using its side

scan
::::::::
side-scan sonar. The REMUS data are used to create an a priori map of the

underwater environment via processing software developed by SeeByte, Ltd. This a
priori map consists of the locations of any strong sonar features in the target field.

Typical prior map generated using a REMUS 100 equipped with a marine-sonic
side-scan sonar. A series of features were extracted by trained human operates from
the side-scan sonar imagery to produce an a priorimap for the target reacquisition
mission. The distance between the features is approximately 20m. Fig. courtesy of
SeeByte, Ltd.

This map and the location of the feature of interest (FOI) acts as input to a second
low-cost re-localization

:::::::::::
relocalization vehicle. In the mission scenario we aim to

release this vehicle at a distance of 100 to 1,500 m from the center of the prior map
and have it swim at the surface close to the feature field before diving to the seabed.
Upon re-entering

::::::::
reentering

:
this feature field, the vehicle will extract features from

its sonar and use these features to build a map of the features.
Having re-observed

:::::::::
reobserved

:
a sufficient number of features

:
, the AUV will

localize relative to the a priori map and attach itself to the FOI. If successful,
:

the
AUV will self-detonate or place an explosive charge. Because of this the vehicle
is not intended to be recoverable. For these reasons a low-cost vehicle design
requirement has had significant impact on the SLAM algorithms mentioned here.
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Overview of Vehicles Used

The vehicle used in development has been the iRobot Ranger AUV [67]. This
vehicle was equipped with a depth sensor, altimeter, GPS receiver, a 3D

::::
3-D

compass, an acoustic pinger,
:

and a Blueview Proviewer 900 kHz forward looking
sonar. The vehicle’s design was intended to be low cost and light weight. As
indicated by Fig. 8.8, it is single-man portable and deployable.

The design of the vehicle incorporates a propeller which is entirely servo-ed
::::::
servoed.

This allows the vehicle to be highly maneuverable with a very tight turning radius of
0.5 m (compared with 10 m for the REMUS 100). This is of particular importance
for the target homing at the end of the mission. The cruising speed of the AUV
is quite low at about 0.6 m/s—comparable with typical surface currents. Thus

:
, the

dead-reckoning error due to the current can be quite significant. Given the small
diameter of the vehicle, a processor smaller than the typical PC104 generation with
limited capability , was used. This resulted in severe processing restrictions which
are mentioned in subsequent sections.

The vehicle specifically did not have a DVL, used for precise velocity estimation
due to cost regions. It would be remiss for us not to mention that the current range
of FLS devices are comparable in price to a typical DVL, however

:
;
::::::::
however,

:
a

significant proportion of this price represents the overhead cost of research and
development. The manufacturer expects that mass production can reduce cost by
an order of magnitude. Nonetheless the utility of the capabilities outlined herein go
far beyond this particular application.

While the Hydroid REMUS 100 was primarily used as a survey vehicle (as
discussed in Sect. 8.5.2), it was also used in several experiments demonstrated in
Sect. 8.5.5.

Marine Vehicle Proprioception

At high frequency
::::::::::::
high-frequency

:
depth estimates, altimeter altitudes, GPS fixes

and compass estimates of roll, pitch and heading are fused with actuation values
(orientation of the servo-ed

:::::::
servoed propeller and the estimated propeller RPM)

using a typical EKF prediction filter to produce an estimate of the vehicle position
and uncertainty at each time. In benign current-free conditions, with careful
tuning and excellent compass calibration

:
, this procedure produced a dead-reckoning

estimate with about 1 % error per distance traveled.
However as we transitioned to more challenging current-prone conditions in later

stages of the project (as discussed in Sec. 8.4.2), a current estimation model was
developed so as to reject the vehicle’s drift in this situation. (Because of the nature
of this project

:
, it is not possible to use the aforementioned DVL-enabled vehicle’s

estimate of the current profile).
:
.)

:
This module is designed to be run immediately

prior to the mission as the vehicle approaches the target field.
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Fig. 8.9 The sonar image generation process for a single sonar beam. Each beam return is an
vector of intensities of the returned sonar signal with objects of high density resulting in high
returns and shadows resulting in lower intensities

This simplistic model performed reasonably well in smaller currents (below
0.3 m/s) and allowed the AUV to enter the field. After this,

:
success was primarily

due to the sonar-based SLAM algorithm (outlined in Sect. 8.5.2). In this current
regime, we were able to enter the field approximately 85 % of the time using this
model

:
,
:
and we estimate the error as about 5 % per distance traveled.

8.5.1 Forward Look
::::::::
Looking

:
Sonar Processing

The sonar is our most important sensor allowing the AUV to perceive its environ-
ment. During the project a series of Blueview Proviewer FLS sonars were used. In
this section we will give an overview of the sensor technology before presenting our
sonar processing algorithms in Sect. 8.5.1.1.

The Proviewer FLS operates using Blazed Array technology [71]. Typically the
sonar consisted to two transducer heads (horizontal and vertical) each with a field
of view of 45◦, although 90◦ and 135◦ units were later used.

An outgoing ensonifying signal (colloquially known as a ‘ping’
::::::
“ping”) reflects

off of objects of incidence (in particular metal and rock)
:
, and the phase, amplitude

:
,

and delay of the returned signals are processed to produce a pattern as indicated in
Fig. 8.9 (by the manufacturer Blueview

::::::::
BlueView). This return is evaluated for each

array element with one degree
:::::::::
one-degree

:
resolution in the plane of the head,

:
and

the output is then fused together via digital signal processing to produce the image
in Fig. 8.10. AQ: “Figures 8.9–

8.14” have been
renumbered to appear
in sequence. Please
check.
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Fig. 8.10 Typical underwater camera and sonar images. The clear water and well lit
:::::
well-lit

scenario represents some of the best possible optical conditions,
:
; nonetheless

:
, visibility is only a

few meters. This 90◦ Blazed Array sonar horizontal image indicates 3 features (one at 5 m in front;
one at 20 m and 5◦ to the left and one at 35 m and 40◦ to the left)—which is more than typical

The outgoing sonar signal also has a significant lobe width, ϕ ∼ 20◦, which
means that there is significant ambiguity as to the location of the returning object
in the axis off of the return. This distribution was used to estimate the elevation of
detections using only the horizontal image.

8.5.1.1 Sonar Feature Detection

In this section we will outline our algorithms which extract point features from
regions of high contrast. Forward looking sonar has previously been used for
obstacle detection and path planning as in [63], ;

:
in this application the feature

extraction is focused on conservative estimation of all detected objects given the
very noisy output of the FLS systems. Finally, [7] carried out multi-target tracking
of multiple features from a FLS using a PHD filter.

Most normal objects are visible at 20 m
:
, while very brightly reflective objects

are detectable to 40 m. Adaptability to bottom reflective brightness was achieved by
the on-line

:::::
online estimation of an average background image immediately after the

vehicle leveled out at its cruising depth. Estimating this background noise image was
essential for us to achieve excellent performance in both sandy and muddy bottom
types. Having done this, the features are detected based on gradients of the sonar
image in each of four different sonar regions. The specific details of our feature
detector and a quantitative analysis of its performance are available in [20, 23].

In terms of processing, the feature detector uses negligible processing power. The
formation of the input image (using the Blueview SDK)—the input to this process—
requires a substantial 180 ms

:
, per image. The feature detector requires about 18 ms

while the remaining CPU power is used to fuse the measurements,
:
to

:
make high

level mission decisions and to control the AUV.
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Fig. 8.11 As the robot
explores, a pose

:
((black))

:
is

added to the graph at each
iteration,

:
while feature

detections
:
((red)

:
) are also

added to produce a dense
trajectory. This dense
trajectory is very large

:
, so we

periodically marginalize
portions of the trajectory and
the feature observations into
composite measurements

:
((green)) at a much lower rate

8.5.2 Marine Mapping and Localization

As in the case of cooperative acoustic navigation, this application results in a series
of constraints which can be optimized to best inform the AUV of its location relative
to the map.

The complexity of the system of equations is tied to the sparseness of the A matrix
which is itself dependent on the fill-in caused by loops in the graph structure. We
explicitly avoid carrying out loop closures in this filter so as to maintain sparsity.
All of this ensures that the matrices remain sparse and computation complexity
predictable. Decomposition will not grow in complexity at each iteration

:
, while the

computational cost of back substitution will grow, but it is linear.
So as to avoid computational growth due to an ever increasing

:::::::::::::
ever-increasing

graph size and also to produce an input to the next estimation stage, we period-
ically rationalize the oldest measurements from this graph to form a composite
measurement. To do this we marginalize out all the poses that have occurred during
the previous (approximately) 10 s period to produce a single node for the relative
motion for that period as well as nodes for fully detected features and the associated
covariances. This approach is very similar in concept to key-frames

::
key

::::::
frames

:
in

vision SLAM and is illustrated in Fig. 8.11.
We time this marginalization step to occur after a feature has left the sonar field

of view as this allows us to optimally estimate its relative location given all available
information. This composite measurement is then added to a lower-frequency higher
level

::::::::::
higher-level

:
graph. This low–frequency

:::::::::::
low-frequency

:
graph is used as input

to the prior map-matching
::::
map

::::::::
matching algorithm in Sect. 8.5.3. Meanwhile the

high frequency
:::::::::::::
high-frequency graph begins to grow again by the insertion of newer

constraints into Ai.
An alternative approach would be to maintain the dense trajectory of the robot

pose at all times. This is the approach taken by iSAM [40], however;
::::::::
however, given

the size of the resultant graph, we are not certain that such an approach would have
been able to yield a computationally constant solution required for our low-powered
embedded CPU.
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Additionally and unlike most land-based systems, the underwater domain is
characterized by extended periods where the seabed is featureless for long distances
and the resultant composite measurement is simply the relative trajectory of the
distance traveled.

8.5.2.1 Feature Tracking

While the section above explains how the graph of the trajectory and sonar
observations is optimized and efficiently solved, we have not discussed the way
in which sonar targets are proposed.

The sonar detector passes point extractions to a target nursery which maintains
a vector of all recent detections. The nursery feature projects the detections into a
local coordinate frame using the recent vehicle dead-reckoning

::::
dead

::::::::
reckoning

:
and

uses a probabilistic distance threshold to associate them with one another. Should a
sufficiently large number of detections be clustered together (approximately 7–8 but
dependent on the spread and intensity of detections), it is inferred that a consistent
physical feature is present.

At this stage this nursery feature is added to the square root smoother. All of the
relative AUV-to-point constraints for that feature are then optimized which results
in improved estimation of the feature and the AUV trajectory. Subsequent point
detections, inserted directly into the pose graph, result in an improved estimate via
further square root smoothing. This approach also estimates the height/altitude of
the sonar target using the sonar intensities measured at each iteration.

Finally it should be noted that the input to this feature tracker are point features
characterized only by their location and covariance (due to the poor resolution of the
sensor). This makes it difficult to robustly infer SLAM loop closures on the graph
structure.

8.5.3 Global Estimation and Map Matching

Given this high level
:::::::::
high-level graph of the robot trajectory and observed feature

locations, it still remains for the autonomous system to make a critical judgment
of where it is relative to the a priori map and to decide if this relative match is
certain enough to be declared convincingly. To do this we maintain a set of match
hypotheses in parallel. We compare them probabilistically so as to quantify the
quality of the map match.

This comparison is implemented using a bank of estimators—each tracking
a different match hypothesis in parallel. The relative likelihood of one match
hypothesis over another is computed using positive information (of prior features
detected by the sonar) as well as negative information (of prior features that were
expected but undetected by the sonar)

:
,
:
and in this way matching can be done in
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a probabilistically rigorous manner. Simply put: ,
:
if one expects to detect features

predicted to lie along the trajectory of a robot and these features were not seen
:
, then

the trajectory must be less likely.
The inclusion of this extra information is motivated by the regular rows of

feature in the field and the inability of positive information metrics to estimate
the relative position of the AUV along these lines. The incorporation of negative
information in this way is to, our knowledge, a novel contribution and was by
motivated information not captured by algorithms such as joint compatibility branch
and bound (JCBB) algorithm [59].

8.5.3.1 Negative and Positive Scoring

In SLAM, multi-hypothesis comparison can typically be reduced to a scoring
algorithm of the relative probabilities of candidate solutions. Here we propose an
algorithm for multi-hypothesis scoring which uses both positive as well as negative
information which we name the negative and positive scale (NAPS). An early
version of this concept was introduced in [23]. More details are provided in [20].

At time t, we define NAPS for hypothesis i as the ratio of the probability of its
map matching hypothesis, hi,t , compared to a null hypothesis, hnull , when both are
conditioned on the measurements z1:t

NAPS(hi,t) = ln
(

p(hi,t |z1:t)

p(hnull,t |z1:t)

)
(8.15)

We define a hypothesis as the combination of an estimate of the graph structure of
the SLAM problem xh (the vehicle trajectory and all detected features) as well as all
data association matches of these features to map features in the prior map. The null
hypothesis is a special version of this hypothesis in which no data associations exist
and in which it is proposed that each detected features is a new feature independent
of the map. We use it as normalization for maps of growing size.

Dropping reference to i for simplicity and using Bayes’ rule gives

NAPS(ht) = ln
(

p(zt |ht)p(ht)

p(zt |hnull)p(hnull)

)
(8.16)

We split p(zt |h) into two terms representing both negative and positive informa-
tion

p(zt |h) = η p(zpos|h)p(zneg|h) (8.17)

Positive information is then defined, in the same way as for JCBB, as the
likelihood of the measurements given the hypothesis

p(zt,pos|h) = ηz,pose−
1
2 (xh−zt )

TΣ−1(xh−zt )

= ηz,pose−Dh



268 Fallon et al.

where Σ represents the covariance, ηz,pos is a normalization constant
:
, and Dh ::

is the
Mahalanobis distance.

The term p(h) represents a prior probability of a particular map hypothesis being
created by the robot which we propose is directly related to the number of features
N f matched to the prior map is given by

p(h) = ηxeλN f (8.18)

where ηx is a normalization constant, λ is a free parameter. ,
::::

and
:

N f is an
integer between zero and the total number of features in the prior map. While this
formulation does not take into account aspects such as a target’s measured visibility
or other such specific terms, it does give us a measure of the confidence of a map
match.

Combining these terms and canceling where possible gives
:::
give

:
the following

expressions for NAPS and as well as more common positive-only scoring (POS)
metrics:

NAPSt(h) =−Dh +λN f +Ch,neg (8.19)

POSt(h) =−Dh +λN f (8.20)

This specifically indicates the contribution of negative information, Ch,neg, that we
believe is neglected in typical multi-hypothesis scoring algorithms. POS algorithms
implicitly assume Ch,neg = 0 and don’t

::
do

:::
not

::
account for it in scoring the

hypotheses. Most approaches assume very-high
::::
very

::::
high

:
λ : essentially selecting

the hypotheses that match the most total features and then ordering those by
Mahalanobis distance—as in the case of JCBB. A overview of such algorithms is
presented in [58, 62].

8.5.4 Evaluating Negative Information

We define negative information as :

Ch,neg = ln
(

p(zt,neg|h)
p(zt,neg|hnull)

)
= ln(p(zt,neg|h))− ln(p(zt,neg|hnull)) (8.21)

As each hypothesis NAPS score will eventually be compared to one another, the
second term need not be calculated.

For a particular hypothesis, consider an entire vehicle trajectory and the sonar
footprint that it traced out (such as in Fig. 8.12). Also consider a prior map feature
which is located within this footprint but was not detected. We wish to measure the
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number of times that this feature ought to have been detected, given that trajectory.
NI is formed as the product of the probability of each undetected feature given the
hypothesized vehicle trajectory

p(zt,neg|h) = p(zt,neg, f1 ∩ . . .∩ zt,neg, fnu |h)

= ∏
f∈Nu

p(zt,neg, f |h) (8.22)

= ∏
f∈Nu

(
1− p(zt,pos, f |h)

)
where st is whole area sensed during measurement zt , thus: ;

:::::
thus,

p(zt,pos, f |h) =
∫

p( f )∩p(st )
v f p( f )p(st)dA (8.23)

where v f is the visibility of feature f and p( f ) is the prior probability of that feature.
In words, the probability of not detecting each conditionally-independent

:::::::::::
conditionally

::::::::::
independent feature is the product of one minus the probability of detecting each
feature, integrated across the intersection of the PDF of each feature and the PDF of
the scanned sensor area. This formulation is subject to the following assumptions:
(1) the sensor occlusion model is well-defined and accurate, (2) all features are
static, (3) feature detections are independent, and (4) feature visibility can be ac-
curately modeled. This calculation, often intractable due to complicated integration
limits, theoretically defines the probability of a set of negative measurements zt,neg
given sensed area st .

More information about its precise evaluation is presented in [20]. The result of
the metric is a positive value which scores a particular hypothesis more likely when
its observations do not contradict the prior map.

In particular, combining negative information with the other (positive-only)
metrics in Eq. 8.19 allowed us to disambiguate similar locations along a row of
otherwise indistinguishable features, as indicated in Fig. 8.12.

While the AUV operated in the field this metric is evaluated for each hypothesis.
The vehicle controls itself off of the most likely hypothesis: giving heading, speed

:
,

and depth commands to the low level vehicle controller so as to travel to a set of
preprogrammed way-points

::::::::
waypoints in the field. When the metric for a particular

hypothesis exceeds a threshold, it is decided that the AUV is matched to the prior
map and switches to a final target capture mode.

When it approaches this location
:
,
:
the FOI should be observed in the sonar

imagery. The mission controller then transitions to directly controlling using the
sonar detections using a PID—which we call sonar servoing. It opens a pair of tines
with a tip separation of approximately 1m and drives onto the mooring line of the
FOI.
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Fig. 8.12 Illustration of the effect of negative and positive scoring (NAPS). Consider the AUV
trajectory from A to B with the sonar sensor footprint enclosed in green

::::
green. If the AUV observes

the red
::
red

:
feature, how do we match its trajectory to the prior map (purple squares

::::::::::
purple squares)?

Using JCBB,
:
the observed feature will be matched equally well to either prior feature. However

:
,

using negative information, NAPS indicates that the match in the lower figure
::::::::

lower figure is
more likely. The upper figure

::::::::
upper figure is less likely because we would have expected to have

observed both features—but only observed one

8.5.5 Field Experiments

The system has undergone extensive testing and evolution over a number of years.
Starting in November, 2006,

:
we have conducted approximately 14 sea trials, each

lasting 2 to 3 weeks. Our experiments began in fairly benign environments, using
highly reflective moored objected as features, and progressed to more challenging
conditions such as natural sea bottom targets and strong currents. After each trial we
have refined and improved the system. In the following we summarize the progress
of the development of the algorithms and the vehicle platform (Fig. 8.13).AQ: Please check if

inserted citation for
Fig. 8.13 is correct.

Typically the ingress point/direction to the field was varied for each mission
:
,

while the choice of feature of interest was taken at random just before placing the
AUV in the water. After reaching the field, the vehicle typically traveled along the
rows of features indicated in Fig. 8.14. This was so as to keep the number of map
match hypotheses low (to about 4–5). The typical mission duration was 15–25 min,
although the mission planner could be programmed to repeat the mission if the AUV
failed to find the feature field. A typical water depth was 15 m.

Detailed comparison of mission parameters is difficult as the effect of the
vehicle’s control decisions is that different paths and observations follow. For this
reason, this section focuses on the progression of our core map matching algorithm.

St. Andrews Bay, Florida, June 2007: The NAPS and joint compatibility
branch and bound (JCBB) criteria were alternately used over 18 trials on a field
of strongly reflective moored targets. The JCBB implementation uses a threshold
on the Mahalanobis distance for multiple pair matching and chooses the most
compatible pairs. The results of this live test and selected other tests are summarized
in Table 8.1. The difference in the frequencies is 1.41 standard deviations which
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Fig. 8.13 A top-down overview of a successful mission using the accurate REMUS 100

:::::::::
REMUS 100 vehicle. The vehicle approached from the north-west

:::::::
northwest and extracted feature

points (purple dots
::::::::
purple dots). Using these points and the prior map ((blue squares)), the SLAM

map (black squares
::::::::::
black squares) and the vehicle trajectory estimate

:
((magenta line)was

:
)
::::
were

formed. Having matched against the map,
:

the vehicle homed to the feature of interest. The
abrupt position changes are the result of the square root smoother. The scale of the grid is 10 m.
It is important to note that the DVL-INS-enabled AUV would have failed

:::::::::::::
would have failed to

reacquire the FOI without using sonar as the map itself was only accurate to 5 m
:
((blue line))

:

Fig. 8.14
:::::
Typical

:::::
prior

:::
map

::::::::
generated

::::
using

::
a
::::::
REMUS

::::
100

:::::::
equipped

::::
with

:
a
::::::

Marine
:::::
Sonic

::::::
side-scan

:::::
sonar.

:
A
:::::

series
::
of

::::::
features

:::
were

:::::::
extracted

::
by

:::::
trained

:::::
human

::::::
operates

::::
from

:::
the

:::::::
side-scan

::::
sonar

::::::
imagery

:
to
::::::
produce

::
an

:
a
::::
priori

:::
map

::
for

::
the

::::
target

::::::::::
reacquisition

::::::
mission.

:::
The

::::::
distance

::::::
between

::
the

::::::
features

:
is
:::::::::::

approximately
::
20

:
m
::::
(Fig.

::::::
courtesy

::
of

:::::::
SeeByte,

:::
Ltd.)

gives a 91 % significance. We believe this demonstrates that the NAPS outperforms
the simpler JCBB matching criteria in our application.

Narragansett Bay, Rhode Island, June 2008: Using the data from June 2007,
significant improvements to our sonar processing algorithms allowed for improved
detection of man-made and natural bottom features. This includes the addition of
an adaptive noise floor model discussed in Sect. 8.5.1.1 and a reimplementation in
integer logic for increased efficiency. The field for these tests consisted of various
man-made and naturally occurring objects on the sea bottom as well as moored
targets. The bay had a significant tidal current comparable to the 0.5 m/s velocity of
the vehicle, which gave us substantial dead-reckoning errors.
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Of the nine runs
:
, we attached to the target once and had two mechanical failures.

In both cases the tine mechanism broke upon hitting the mine mooring line. Thus
the overall success rate of the sonar navigation system was 33 %. After these tests
the current model mentioned in Sect. 8.5 was developed.

Gulf of Mexico, near Panama City, Florida, June 2009: The entire system
was tested on a field of 12 bottom objects and 3 moored objects over a two
week

::::::::
two-week

:
period. These experiments tested an improved model for current

estimation along with minor adjustments to the feature modeling. The current during
this period was estimated as typically being 0.2 m/s using GPS surfaces. We had 17
successful target attachments in 26 runs.

Gulf of Mexico, July 2010: An additional set of experiments were carried out.
In this circumstance we observed much higher currents which changed significantly.
These currents varied from day to day but were estimated to be greater than the
vehicle velocity (greater than 0.5 m/s) on certain days meaning that the vehicle
could not make any headway against the current when it found itself down field
from the features.

Presented in Table 8.1 are two different results for this experiment. One result
gives the overall percent success when including all of the 42 runs carried out:
31 %. Filtering the runs to the 18 runs in which the AUV was able to enter the field
(as defined by at least a single feature detection in the sonar) produced a success
percentage of 72 % which we believe is more in fitting with the performance of
the SLAM algorithm and comparable to the previous year’s results. Nonetheless,
this demonstrates the limitation of this particular vehicle platform as well as current
estimation without a direct sensor.

8.5.6 Discussion

This section described target reacquisition system for small low-cost AUVs, based
on forward looking sonar-based SLAM aided by a prior map. Our results indicate
that when the AUV correctly matches to the prior feature map, it is regularly able to
re-visit

:::::
revisit

:
a designated feature of interest.

The main failure mode of the algorithm is failing to enter the feature field, due to
disturbances that exceed the vehicle’s control authority. For small to moderate ocean
currents

:
, we developed an on-line

:::::
online

:
current estimation procedure which allows

the vehicle to avoid being driven off course during the initial vehicle dive. Room
exists to improve this estimation procedure by estimation of the known current
features mentioned in Sect. 8.5. Unsurprisingly in currents of more than 50–70 %
of the vehicle’s velocity, successful performance was limited. This presented an
obvious engineering limitation for this technology.

While more research is necessary to understand the many variables that can
effect the system performance, such as the density and complexity of environmental
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Table 8.1 Selected results in different conditions, with and without use of NAPS
Match Criteria

:::::
criteria

:
No. of Runs

:::
runs Successes Frequency (%)

√
s2

n/n

:
(%

:
)

Bright targets - June 2007

NAPS 9 6
67%

:
67

:
17%

:
17

:

JCBB 9 3
33%

::
33 17%

:
17

:

NAPS
::
and

:
JCBB

33%
:
33

:
24%

:
24

:

NAPS Multi-hypothesis
:::
and

:::::::::::
multi-hypothesis

:

18 14
78%

::
78 10%

::
10

Normal targets - June 2008

NAPS Multi-hypothesis

:::::::::::
multi-hypothesis

:

9 3
33%

:
33

:
17%

:
17

:

Normal targets, low currents - June 2009

NAPS
Multi-hypothesis

:::::::::::
multi-hypothesis

26 17
65%

:
65

:
10%

:
10

:

Normal targets, high currents - June 2010

NAPS
Multi-hypothesis

:::::::::::
multi-hypothesis

42 13
31%

:
31

:
7%

:
7

As above, having reached the field - June 2010

NAPS
Multi-hypothesis

:::::::::::
multi-hypothesis

18 13
72%

:
72

:
11%

:
11

:

features, the project has shown the viability of the viability of the FBN concept for
feature reacquisition with low-cost vehicles.

8.6 Loop Closure: Ship Hull Inspection

The third application we consider is autonomous ship hull inspection. Hull inspec-
tions of large ships are frequently performed for safety and security purposes. It
is not feasible to put the ships into dry-dock

:::
dry

::::
dock

:
every time an inspection

is required. Currently, this inspection is primarily carried out by divers. This is
a time consuming

:::::::::::::
time-consuming

:
and dangerous task for the divers. To address

these risks, Bluefin Robotics and MIT built a ship hull inspection vehicle (see
Fig. 8.15) , called the hovering autonomous underwater vehicle (HAUV) [75]. The
HAUV is equipped with a DVL to measure velocity relative to a surface, an IMU
with ring laser gyro for attitude measurements and a dual frequency

::::::::::::
dual-frequency

identification sonar (DIDSON) [4] for imaging the structures being inspected.
For autonomous ship hull inspection, it is crucially important, but difficult, to

accurately track the vehicle position during mission execution. Accurate position
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Fig. 8.15 Top view of the
Bluefin-MIT hovering
autonomous underwater
vehicle (HAUV). The vehicle
is equipped with a Doppler
velocity log (DVL), an
imaging sonar, an optical
camera,

:
and a light strobe.

The sonar and DVL can be
actuated independently

information is essential for ensuring full coverage of the area being inspected. The
ship hull inspection task further requires reporting the location of potential targets

:
,

so they can later be identified and removed. It is difficult, however, to obtain the
global position estimate underwater from an external source. GPS is only available
at the surface, so acoustic beacons would need to be deployed. Employing only rate
gyros and odometry, over time sensor errors accumulate

:
, and the position estimate

will drift.
Using time of flight

::::::::::
time-of-flight

:
measurements with acoustic beacons has been

commonly used in underwater navigation [84, 85, 87] to obtain a global position
estimate,

:
; it has also proved successful in various applications like underwater

archaeology [53] and ship hull inspection [30]. Here, we want to avoid the need for
external infrastructure , and instead are interested in achieving drift-free navigation
by using the on-board

::::::
onboard

:
imaging sonar. In particular, registering current

data with previously observed sonar frames provides the necessary constraints to
eliminate long-term drift.

Augmenting vehicle localization using sonars has been undertaken in a number
of prior works. Walter et al. [80] used manually extracted landmarks , and
later automatic feature detection [79] with the ESEIF to produce a map of the
environment. An automatic feature detector and a landmark formulation using an
EKF filter was

::::
were

:
used in [13]. Sekkati et al. used extracted corner features from

DIDSON frames to estimate vehicle motion over several frames [68]. In related
work Negahdaripour et al. combined the DIDSON with an optical camera for 3-
D target reconstruction using opti-acoustic stereo [57]. Eustice et al. [16] used
constraints from overlapping camera frames within a SLAM information filter to
estimate vehicle pose. A full 360-degree sonar scanner has been used in partially
structured underwater environments [65] for localization , by tracking line features
in the environment using an EKF for the estimation process. Mallios et al. recently
showed promising results in [51] using an mechanical scanning sonar and scan
matching in an EKF framework.

Here, we use the pose graph formulation from Sect. 8.2.2 to combine onboard
navigation information with sonar registration based on automated dense feature
extraction [35]. We focus on imaged areas that are roughly flat, such as the open
areas of ship hulls and the sea floor

:::::::
seafloor. Our system allows for drift-free

navigation without depending on any external infrastructure.
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8.6.1 Drift-Free Navigation using
:::::
Using

:
Imaging Sonar

The goal of this application is to correct drift in the vehicle state estimate over time
using the imaging sonar—we begin by defining the quantities to be estimated. The
vehicle pose consists of position and attitude. The vehicle position in 3D

::::
3-D is

specified by Cartesian coordinates x,y,z with respect to some arbitrary reference
frame, such as the starting point of the mission or a GPS frame acquired before
diving. The attitude of the vehicle is specified by the standard Euler angles ϕ ,θ ,ψ
or roll, pitch, and heading,

:
respectively.

Without the imaging sonar information
:
, only three out of the six degrees of

freedom can be estimated without long-term drift. The ring laser gyro is used
for heading estimation by integrating the measured angular rotations. A magnetic
compass is not a viable option in close vicinity to a ship hull. The DVL provides
velocities that are used for dead reckoning. In addition to the relative measurements,
absolute measurements of depth from pressure and roll and pitch from the IMU are
available. These absolute measurements are integrated into the estimation of the
pose graph shown in Fig. 8.1. Nonetheless, no global information is available to
limit long-term drift in the heading and x,y position.

Adding loop closure constraints from imaging sonar into the optimization
problem eliminates long-term drift in the remaining three dimensions. The loop
closure constraints are obtained by registering current sonar images to previously
observed ones. Next, we describe the imaging sonar geometry, followed by our
approaches to feature extraction and sonar registration.

8.6.1.1 Imaging Sonar Geometry

Following the formulation in [56, 57, 68], we define the geometry of the imaging
sonar and derive a model that describes how the image is formed. To generate an
image, the sonar emits narrow-beam sound wave and then listens to the returns,
sampling the acoustic energy returned from different directions. The sonar provides
time of flight and intensity for each azimuth angle. Combining the returns from all
the elements provides an image of the reflective surfaces in front of the sonar. We
use an imaging sonar with vertical beam width of 28◦, covering 96 beams over a
29-degree horizontal field of view. Note that for a given point in the image,

:
it can

lie anywhere on an arc at a fixed range, spanning the vertical beam width.
Mathematically,

:
the imaging process can be described as follows. We define the

coordinate system for the sonar as shown in Fig. 8.16a. Let us consider a point p =
[x y z]⊤ in the sensor coordinate frame, and let s = [r θ ϕ ]⊤ be the same point in
spherical coordinates, where r is the range, θ is the azimuth,

:
and ϕ is the elevation of

the point. We can relate the spherical and Cartesian coordinates with the following
equations:

:
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a

b

Fig. 8.16 (a) DIDSON imaging sonar geometry. (b) Sample images showing a clean hull
:
((left)

:
)

and several views of intakes and other structures

p =

 x
y
z

=

 r cosϕ cosθ
r cosϕ sinθ

r sinϕ

 (8.24)

s =

 r
θ
ϕ

=


√

x2 + y2 + z2

arctan2(y,x)

arctan2
(

z,
√

x2 + y2
)
 (8.25)

The sonar does not provide azimuth ϕ , so we measure point p is I(p) = [r θ ]⊤, and
the Cartesian projection of this point is

Î(p) =
[

u
v

]
=

[
r cosθ
r sinθ

]
(8.26)

For a small vertical beam width, this can be viewed as an approximation to an
orthographic projection.
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Fig. 8.17 Intermediate steps of the feature extraction process. The extracted features are shown
in red

:
((a))

:
Initial sonar image

:
((b))

:
Smoothed

:
((c)

:
) Gradient ((d)

:
) Threshold ((e)

:
) Clustering ((f)

:
)

Extracted Features
:::::
features

8.6.1.2 Feature Extraction

The imaging sonar returns intensity measurements at a number of ranges along
each azimuth beam. The example sonar image in Fig. 8.17a shows some features
on a flat surface. A strong return followed by a shadow likely indicates an object
standing above the imaged surface, while a shadow on its own indicates a hole
or a depression in the surface. Variations in the returned signal are also caused
by changes in material properties, the strength of the transmitted signal, receiver
sensitivity, distance to target, and the grazing angle, among other factors.

Stable features are extracted from sharp transitions in image intensity that mark
the boundary between a strong return and a shadow. The main steps of the algorithm
are

::
as

::::::
follows:

1. Smooth the image.
2. Calculate gradient.
3. Threshold a top fraction as features.
4. Cluster points and discard small clusters.

First,
:
the image is smoothed using a median filter, significantly reducing noise, while

still preserving edges, as shown in Fig. 8.17b. Next, the gradient is calculated by
computing the difference between the local value and the mean of the np previous
values along the beam (Fig. 8.17c). The number of previous values np used to
calculate the mean around the current values affect the type of objects that are
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detected. Then points with gradient exceeding a given threshold are marked as
candidate features (Fig. 8.17d). The threshold is adaptively chosen, such that a fixed
fraction of the features is retained. Note that strong positive gradients are ignored
because these correspond to the ends of shadows and are not as stable as negative
gradients, which are closer to the sensor. Next, spurious features are eliminated
by clustering the points and eliminating small clusters (Fig. 8.17e). The remaining
extracted features are shown in Fig. 8.17f, typically containing on the order of one
thousand points.

Assuming a locally flat surface, the Cartesian error associated with a successful
registration arises mostly from the vertical beam width. The inclination angle
between sensor plan and imaged surface is typically around twelve degrees, with
a perpendicular distance between one and two meters. For a vertical beam width of
28◦, the error can therefore reach 15 cm , but is typically much smaller.

8.6.1.3 Registration

We align two overlapping sonar images by registration of the extracted features
using the normal distribution transform (NDT) algorithm [5]. The NDT algorithm
assigns a scan ’s feature points

::::::
feature

:::::
point to cells of a regular grid spanning the

covered area. For each cell we calculate the mean and variance of its assigned points.
This is done for four overlapping grids, where each grid is shifted by half a cell width
along each axis. Using multiple shifted grids alleviates the effect of discontinuities
resulting from the discretization of space. Two of the benefits using the NDT are
that it provides a compact representation of the scan , and no exact correspondences
between points are needed for alignment. This is useful here, because the movement
of the HAUV causes variations in the returns from surfaces, causing some points to
drop in and out of the extracted feature set.

The NDT of a scan serves as our model for registration. Given a new scan, a score
is calculated for each point by evaluating the Gaussian of the NDT cell that receives
the point. This provides a measure of the likelihood that a given point is observed
based on the model. We define a cost function as the sum of the negative scores of
all the points in the current view. Minimizing the cost with respect to the the change
in x,y position and heading ψ of the sonar provides the transformation between
the scans. Because the main goal of the registration method is to close loops after
drift has accumulated, we do not use the current estimate of the vehicle location
to initialize the search. Instead, we repeat optimization from several initial values
in an attempt to find the global minimum. To avoid incorrect matches, acceptance
is based on a conservative threshold of a normalized score , and also requires a
minimum number of points to be matched. A successful registration is added to the
pose graph as a loop closing

::::::::::
loop-closing

:
constraint.
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Fig. 8.18 HAUV trajectory along a ship hull with sonar footprint visualized against a 3D
::
3-D

:
ship

model. The current sonar image with detected features is shown on the right
:::
right

Fig. 8.19 SS Curtiss in San
Diego, with the submerged
HAUV visible in the
foreground as the yellow

::::
yellow

:
object in the water

Fig. 8.20 Estimated vehicle trajectory along the ship hull of the USCGC Seneca in Boston –
detected

::::::::::::
Boston—detected

:
loop closures are shown in pink

:::
pink. The vehicle is shown partially

under the ship hull, with the sonar viewing cone in blue
:::
blue

:
indicating the part of the hull visible

at this instance

8.6.2 Experiments and Results

Initial experiments were performed in a testing tank , to verify that the system runs
on-line

:::::
online

:
and can stay localized over an extended period of time. Further tests

were performed inspecting a patch of the bottom of the Charles river near the MIT
Sailing Pavilion , and on a small vessel with flat bottom in Boston harbor. While
initial experiments focused on flat surfaces, the open areas of larger ship hulls are
only locally flat, requiring a full six degrees of freedom state estimation. A model
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view of a ship from an actual experiment is shown in Fig. 8.18, with the trajectory in
cyan and the sonar viewing cone in blue. Note the large scale

:::::::::
large-scale

:
difference

between the vehicle and the ships this system is targeted for.
The HAUV is tethered during experiments , but uses on-board

:::
but

:::
uses

::::::::
onboard

power. The on-board
:::::::
onboard

:
battery allows operation for several hours

:
, while the

vehicle moves at 0.25 meters per second. An on-board
::::::
onboard

:
computer controls

the vehicle. Our software runs on a laptop on shore, connected by a fiber tether to
the vehicle. The laptop serves for development purposes as well as for visualization
during missions. Without the tether, the trajectory as well as selected data can be
sent by acoustic communication to the shore. The DVL is locked to the hull to allow
operation at a constant distance from the hull.

Recently we demonstrated on-line
:::::
online

:
ship hull inspection on various large

ships. One experiment was performed in early 2011 at the U.S.
:::
US

:
Naval Station

in San Diego on the 183 m long
::::::
m-long SS Curtiss, a roll-on/roll-off container ship

shown in Fig. 8.19. Another experiment was performed in mid 2011
:::::::
mid-2011

:
in

Boston, on a 82 m medium endurance U.S.
::
US

:
Coast Guard cutter, the USCGC

Seneca. One trajectory segment is shown in Fig. 8.20, with loop closing
::::::::::
loop-closing

constraints obtained from sonar registration. The track-lines
::::
track

::::
lines

:
are spaced

approximately four meters apart, providing redundant coverage of the hull with
sonar for the inspection mission.

We demonstrated the accuracy of our SLAM-derived state estimate by revisiting
way-points

::::::::
waypoints

:
under closed-loop control. During inspection, the operator

selected interesting way-points
::::::::
waypoints

:
along the hull using our real-time visu-

alization. The way-points
::::::::
waypoints were selected based on human-recognizable

features, which were saved for later comparison. Later in the mission, the vehicle
was commanded back to various way-points

::::::::
waypoints,

:
and the current and

recorded images were shown for comparison. This served as verification of the
consistency and accuracy of our SLAM system. The uncorrected coordinates
estimated by the vehicle significantly differed after longer operation, showing the
effectiveness of our navigation system in eliminating long-term drift.

A fuller and more complete overview of this particular project can be found in
[33], which also presents more detailed experimental results and demonstrations.
In addition to the sonar-based measurements discussed in this section, the wider
project also incorporated information extracted from the optical camera illustrated in
Fig. 8.15. Combining sonar and visual constants within the same SLAM estimation
problem allows for sensor redundancy as well,

:
taking advantage of complementary

information. The specific application of visual SLAM to this problem is described
in [42].

8.7 Conclusions

We have outlined three very different applications of simultaneous localization and
mapping in the marine environment. SLAM is increasingly mature and is contribut-
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ing to ever more complex marine problems which move to closer interaction with
the underwater environment. In particular we have demonstrated that pose graph
optimization methods for SLAM can operate onboard modern AUVs in real-time,
enabling closed loop

:::
real

:::::
time,

::::::::
enabling

::::::::::
closed-loop

:
autonomous operation for

many missions of interest.
Despite the substantial progress in SLAM for AUVs over the past decade,

there are numerous important topics for future research. Challenges include : (1)
robust long-term operation incorporating recovery from failures and detection of
environmental changes, (2) cooperative mapping by multiple AUVs using undersea
acoustic modems, and (3) integration of SLAM with motion planning and task
control to problem close-range subsea inspection and intervention tasks.
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