
Efficient Scene Simulation for Robust Monte Carlo Localization using
an RGB-D Camera

Maurice F. Fallon, Hordur Johannsson and John J. Leonard

Abstract— This paper presents Kinect Monte Carlo Lo-
calization (KMCL), a new method for localization in three
dimensional indoor environments using RGB-D cameras, such
as the Microsoft Kinect. The approach makes use of a low
fidelity a priori 3-D model of the area of operation composed
of large planar segments, such as walls and ceilings, which
are assumed to remain static. Using this map as input, the
KMCL algorithm employs feature-based visual odometry as
the particle propagation mechanism and utilizes the 3-D map
and the underlying sensor image formation model to efficiently
simulate RGB-D camera views at the location of particle poses,
using a graphical processing unit (GPU). The generated 3D
views of the scene are then used to evaluate the likelihood of
the particle poses. This GPU implementation provides a factor
of ten speedup over a pure distance-based method, yet provides
comparable accuracy. Experimental results are presented for
five different configurations, including: (1) a robotic wheelchair,
(2) a sensor mounted on a person, (3) an Ascending Technologies
quadrotor, (4) a Willow Garage PR2, and (5) an RWI B21
wheeled mobile robot platform. The results demonstrate that
the system can perform robust localization with 3D information
for motions as fast as 1.5 meters per second. The approach
is designed to be applicable not just for robotics but other
applications such as wearable computing.

I. INTRODUCTION

Localization in a previously mapped environment is a
key skill to enable lifelong robotic operation. Monte Carlo
Localization (MCL) [1], [2] is a well-established technique
for mobile robot localization using 2-D laser range scanners.
While MCL has been hugely successful, previous work has
relied on sensors that cost several thousand dollars, and has
largely been limited to motions in the plane in which the
prior map was generated. The extension of MCL to three
dimensional environments has not been straightforward due
to several challenges, including: (1) creation of a suitable 3-D
environment representation for the prior map; (2) operation
in situations where wheeled odometry measurements are
unavailable; and (3) achieving computational efficiency to
enable operation with a sufficient number of particles to
maintain robust performance.

In this paper, we present Kinect Monte Carlo Localization
(KMCL), a new approach to robust and accurate localization
in three dimensional environments using inexpensive RGB-D
cameras such as the Microsoft Kinect1 The approach makes

This work was partially supported by ONR grants N00014-05-10244,
N00014-07-11102, N00014-06-1-0043 and N00014-10-1-0936. The au-
thors are with the Computer Science and Artificial Intelligence Lab-
oratory, Massachusetts Institute of Technology, Cambridge, MA, USA
mfallon,hordurj,jleonard@mit.edu

1In this work we will typically refer to the Kinect, but this work is relevant
to other sensors using RGB-D such as Primesense, SwissRanger and stereo
cameras.

use of an a priori 3-D model of the area of operation which
is composed of large planar segments, such as walls and
ceilings, which are assumed to remain static in typical indoor
environments. Visual odometry is used for particle propaga-
tion, and a likelihood function is computed for each particle
by comparing the current sensed data with a prediction of the
scene that is efficiently computed using a GPU (as illustrated
in Figure 1).

This paper is structured as follows: In Section II, we
discuss the attributes of a (minimal) 3-D planar map of
an indoor environment intended for localization and then
demonstrate how the map can be generated using RGB-D
data from a Kinect. In Section III a Monte Carlo Localization
algorithm is outlined which utilizes only the RGB-D data
to reliably position the sensor within this map. Finally,
Section IV presents a series of experimental demonstrations
using several platforms — robotic and man-portable – that
demonstrate the performance of the approach.

II. CREATING A 3-D BUILDING MODEL

A. Pose Estimation

In this section we outline a procedure for the extraction
of a 3-D building model using a robot trajectory estimated
using Simultaneous Localization and Mapping. SLAM is a

(a) Simulated Color Image (b) Simulated Depth Image

(c) Measured Color Image (d) Measured Depth Image

Fig. 1. Using a prior 3-D building model we efficiently generate simulated
depth and color views (top) which are then compared to RGB-D camera
data (bottom). Using a particle filter, hundreds of similar views are evaluated
and used to estimate the sensor pose in 3-D.



Algorithm 1: Kinect Plane Extraction

Given a RGB-D point cloud;
First discard all points beyond 5m range (and hence in
the inaccurate non-linear range of the sensor);
Downsample cloud using voxel tree with 30cm leaves;
while 30% of points remain or the last extracted plane
was greater than 1m2 do

Extract the largest plane (with points within 0.03m)
from the remaining cloud using RANSAC;
Remove any disconnected points from this plane;
if the plane area exceeds 1m2 then

Retain the plane, its coefficients and pose;
The plane color is determined to be the median
color of the original points;

fundamental subfield of robotics and has progressed from
the initial work of Smith, Self and Cheeseman [3] to the
current state of the art of non-linear least squares optimiza-
tion of the entire robot trajectory and set of observations.
Implementations such as iSAM [4] and HogMan [5] provide
efficient and incremental smoothing via non-linear optimiza-
tion of the underlying robot trajectory when given a series
of measurement constraints — such as those provided by
LIDAR scan-matching.

At this initial stage of our project we have utilized this
type of LIDAR-estimated trajectory to infer the motion of
the RGB-D sensor rigidly connected to the Hokuyo UTM-
30LX laser rangefinder. Doing so allows us to simplify the
3-D map building procedure and to focus on RGB-D-only
localization. Note that ongoing visual SLAM research, such
as [6], [7], would allow us to drop the requirement for a
LIDAR sensor in the map building module in the future.

B. Map Extraction

Using this accurate estimate of the Kinect sensor trajec-
tory, we wish to extract the dominant planar information from
the RGB-D data. We assert that the largest planar polygons
in any indoor environment are those that are (a) typically
stationary from day to day (b) permanent structural features
and (c) sufficient to form a recognizable 3-D model of an
area. Our thesis is that this type of model is sufficient for
accurate and robust robot localization in three dimensions.

In what follows we present the algorithm we used to
generate the coarse building model in Figure 3 which was
sufficient to localize the RGB-D camera. We refer the reader
to more advanced research on the perception, segmentation
and understanding of 3-D point clouds such as [8], [9]
which result in more complete and error-free models of the
environment.

We present in Algorithm 1 a series of steps which extract
these planes from successive scans of RGB-D data taken by
the sensor continuously moving through an indoor building.
Typically this procedure results in the extraction of 3–8
large planes representing the major planar objects within the
sensor field of view. The location of the plane polygons can

Fig. 2. Plane extraction procedure: A frame of raw Kinect data is first
projected into a 3-D point cloud (top). Then large planar objects are
successively extracted (bottom, for several consecutive frames).

then be converted into the global reference frame using the
aforementioned sensor pose. This procedure is then repeated
for each successive scan. Later we combine each observation
of a particular plane into a final representative polygon. The
set of all such planes then represents an accurate map for
the area, as seen in Figure 2.

C. Model Utility and Storage Requirements

In this section we will discuss some design properties
of this map and explain why we believe it to be a use-
ful representation. Other efficient 3-D map segmentation
and storage systems have been proposed and implemented
— often building on the octree voxel data structure. For
example OctoMap [10] demonstrated efficient octree-based
occupancy grid mapping allowing for compact storage of
large scale maps with minimal memory and disk storage re-
quirements. Their representations of the New College dataset
of 40,000m2 required 50 MB of memory or 1 MB of disk
space using OctoMap.

However, our thesis is that by utilizing a fixed grid of
points the resultant octree is in a sense ‘baked in’ and
disconnected from the underlying robot pose used to con-
struct it. Subsequently, should a loop closure be detected
by an exploring robot, it is difficult to adjust the structure
of the tree. Nonetheless, the octree approach has significant
application for path planning and free space detection in
cluttered environments.

In comparison the planar polygon map is connected to
poses in the pose graph optimization mentioned previously
by a relative transformation. Should loop closures or ad-
justments be detected the location of any of the planes can
then easily be adjusted — updating and improving the 3-
D model. Our representation is also efficient — we project
that it will require only 2 MB of disk space to represent the



Fig. 3. The first step of this algorithm is to generate a 3-D building model
which indicates the broad geometric information (but not the precise textural
information). Plane colors are for illustration purposes only at this stage.
This model is later used to allow an RGB-D sensor to localize.

entire 70,000m2 9 floor MIT Stata Center. It intentionally
does not represent small furniture, chairs, tables etc. This
type of information is typically not required for long-range
path planning and is often transient in any particular location.

III. RGB-D MONTE CARLO LOCALIZATION

Having created the planar map, we propose to utilize par-
ticle filter localization to estimate the pose of a robot moving
in this environment. Particle Filtering, more generally known
as Sequential Monte Carlo (SMC), was initially proposed
by Gordon et al. [11]. Initial adaptations of SMC to robot
localization were later reported [1], [2] using laser range
finders and optionally wheel odometry to localize in 2-D.
Using the ROS AMCL software package this approach is
widely used by many researchers in the community.

RGB-D measurements are increasingly noisy beyond 5m,
especifally when compared to Laser range finders (FOV 180–
270 degrees, range 30–80m). They do however provide 3-D
estimation within its 60 degree field of view and we wish
to use this information to estimate the sensor pose in 3-D at
each time-frame k

Ak = (xk, yk, zk, φk, θk, ψk) (1)

as well as the associated velocities in each filter dimension.
However the addition of a state dimension to a particle filter
typically requires an exponential increase in the number of
particles.

a) Height, Pitch and Roll Estimation: While the pro-
posed likelihood function can estimate the full 6-DOF pose,
it is prudent to reduce the dimensionality where possible.

For this reason we will assume that the constrained degrees
of freedom — namely pitch, roll and height — can be ac-
curately estimated independently of the particle filter. These
dimensions can be removed either using an assumption of
horizontal motion (in the case of a ground robot) or direct
estimation of the floor plane from the RGB-D depth data.

In the experiments in Section IV we typically used the
later method. The 6 element state vector will become

Ak = (xk, yk, ψk, ẋk, ẏk, ψ̇k) (2)

In future work we aim to use an IMU and a 6 DOF state
to allow for estimation of the height of a quadrotor or a
person ascending/descending a staircase so as to fully support
position estimation in 3-D — in addition to sensing in 3-D.

A. Particle Propagation

The goal is to estimate the posterior distribution of the
sensor state recursively using the standard two step Bayesian
update rule. We will use sequential Monte Carlo methods
to approximate the recursion of the non-linear and non-
Gaussian system. In this way complex probability distri-
butions can be represented by a set of weighted Monte
Carlo importance samples. We will assume that the initial
state distribution, p(A0), is known or can be estimated as
suggested in Section V.

For each subsequent frame we will propagate the previous
state estimate according to the state transition distribution,
p(Ak|Ak−1) using the estimate produced by the FOVIS
visual odometry algorithm [6]. For each dimension the
propagation equations are of the form (in this case for the
X -dimension)

xk = xk−1 +4T ẋk + ex,k ex,k ∼ N (0, σ2
x) (3)

ẋk = ẋk,vo + eẋ,k eẋ,k ∼ N (0, σ2
ẋ) (4)

where the final term in each equation adds a small amount
of normally distributed noise so as to support unexpected
target motion using σ2

x = 0.004 and σ2
ẋ = 0.0004. The

term ẋk,vo, is the relative (2-D) visual odometry translation
estimate, [vk,vo, wk,vo, ψk,vo], transformed into the particle’s
global coordinate frame

ẋk,vo =
vk,vo cos(ψk−1)− wk,vo sin(ψk−1)

4T
(5)

ẏk,vo =
vk,vo sin(ψk−1) + wk,vo cos(ψk−1)

4T
(6)

ψ̇k,vo =
ψk,vo

4T
(7)

Typically the VO frequency used was 4T = 0.1 seconds.
For smooth and continuous motion, the FOVIS algorithm

demonstrates relative odometry estimates with a mean ve-
locity error of 0.08m/s in typical indoor environments. The
interested reader is directed to [6] for extensive testing of
the visual odometry. However, during abrupt accelerations,
sharp turning motions and featureless images the feature-
based visual odometry algorithm will suffer periods of total
failure. These failures are typically due to motion blur and
problems with the rolling shutter of the Kinect camera.



Fortunately, these failures are indicated by a low number
of matched features, when this is detected we will instead
propagate the particle set using a noise-driven dynamical
model replacing Equation 4 with

ẋk = ẋk−1 + eẋ,k eẋ,k ∼ N (0, σ2
ẋ) (8)

and σ2
ẋ = 0.001. If the failure is relatively short in duration

(less than 3 seconds), it is possible for the MCL algorithm to
overcome this failure entirely2. This robustness to VO failure
is a fundemental benefit of our approach.

For longer duration failures, we envisage abandoning the
current particle set and reinitializing the system anew using
visual bag of words. This will be undertaken as future work
(see Section V).

B. Likelihood Function

Having proposed the particle set for the current instance,
we now wish to evaluate a likelihood for each particle
using the current sensor depth data and to use it to update
the particle weights from the previous iteration. Typically,
the majority of computing time is spent evaluating the
particle filter likelihood function and we have given careful
consideration to its design.

Firstly we propose to down-sample the incoming RGB-D
image by a factor of 16–32. Our experimentation has shown
that from the 640x480 pixel image/cloud, a sufficiently in-
formative likelihood function is possible using only a 20x15
image. Using this smaller image we wish to determine which
of the particle poses is most justified.

In this section we describe two methods to do this. In
the following section we describe an novel approach based
which simulates model views and then compares them to the
measured data, while in Section III-B.2 we describe a method
similar to the ICP scoring function. A short comparison of
the two methods is given in Section III-B.3.

1) Generated Range-Image Ray-to-Plane Function: We
propose to compute the likelihood of a particle pose by
directly generating the range image that would have been
detected from that location using the prior 3-D model. This
range image is generated by finding the closest intersection
between a ray through the optical center and a point on
the image plane with the prior map for each point in the
simulated range image. However instead of brute-force ray-
tracing to find the intersection of each ray with each plane,
it is possible to render each plane directly to the image
plane instead. The distance to the closest plane can then be
queried from the associated Z-buffer. The Z-buffer is used by
computer graphics systems to decide, for each pixel, which
object is closest to the virtual camera and hence should be
rendered — essentially being the depth of the nearest object.
This rendering approach is supported in all modern Graphical
Processing Units (GPU) and the depth image for each particle
can be rendered very efficiently in this manner.

Our implementation uses the OpenGL library to render
the simulated image for each particle. This is similar to the

2By comparison, momentary failure of visual odometry as part of a Vision
SLAM system can be result in significant error

approach in [12] which used gradients in the color image
while here we use the depth information. When OpenGL
renders an image, such as our 3-D model, it natively uses
the Z-buffer to determine hidden surface removal. After
rendering, the Z-buffer values can be read and we will
use them to compute the likelihood of the current sensor
measurement conditioned on the pose of the particle.

Before comparing the sensor depth with the Z-buffer
values there are a few technical issues in the rendering
pipeline that need to be taken into account. First all plane
polygon vertices are transformed using the model transform
into the camera coordinate frame. (Note that OpenGL defines
the camera look axis along the negative Z-axis.)

After the model transformation, the projection transform
is applied. This projection creates the clip coordinates, which
are in homogeneous coordinates, with each rendering prim-
itive clipped to the box (−w,−w,−w), (w,w,w). The z
values are projected in such a way that everything outside
the range [−zn,−zf ] is clipped, where zn and zf are the
near and far range of the z-axis [13]. For the Kinect RGB-D
sensor zn is 0.7m and zf is 20m.

Finally the projected inverse depth on the range
[1/zn, 1/zf ] is mapped [0, 1] before it is written to the Z-
buffer which we can then access.

For a camera calibration matrix K

K =


fx 0 −cx 0
0 fy −cy 0
0 0 1 0
0 0 0 1

 (9)

the projection matrix can be written as KP

P =


2/W 0 1 0
0 2/H 1 0

0 − zf+zn
zf−zn

− 2zfzn
zf−zn

0 0 −1 0

 (10)

Where W and H are the image width and height respectively.
An example depth image is illustrated in Figure 1. Next we
wish to compare it to the measured image (also illustrated)
to produce a likelihood for the particle pose.

a) Likelihood Formulation: To compute the particle
likelihood either the inverse depth Z-buffer values can be
converted to depth or the RGB-D depth data can be converted
to the inverse depth. As the accuracy of camera depth mea-
surements is a linear function of inverse depth we propose
to formulate the likelihood function in inverse depth space.
This is similar to the approach taken in monocular camera
SLAM, for example [14].

For a given particle A(p)
k at time step k, the inverse

depth image, ZG
(p) = (z0(p), . . . , z

Ni

(p)), containing Ni points
is generated as described above. For each inverse depth
pixel, zik, in the measured image ZM

k = (z0k, . . . , z
Ni

k ), the
likelihood is evaluated as follows

p(zik|A
(p)
k ) = βcrN (zik; z

i
(p), σ

2
d) + (1− β)U(0, 1) (11)

where the inverse depth varies in the range (0, 1). An ap-
propriate normalization constant, cr, had been added for the



0 2 4 6 8 10 12 14 16 18 20

0.8

1

1.2

1.4

1.6

1.8

Range [m]

L
ik

e
lih

o
o

d

 

 

16m

12m

8m

4m

2m

1m

Fig. 4. Inverse Depth-parameterized likelihood function evaluated for a
variety of nominal model depths. This parameterization evaluates high-
range depth points with higher variance than shorter ranges — accurately
representing the underlying disparity measurement uncertainty.

truncated normal distribution and the inverse depth variance
σ2
d was chosen to be 0.1m−1. The addition of the uniform

distribution supports heavy tailed behavior and in doing so
each point in the cloud has only a small effect on the overall
likelihood function. The parameter β = 0.01 was found to
give good experimental performance.

The overall likelihood of the particle is then the product
of the point likelihoods across the entire cloud

p(Zk|A(p)
k ) =

Ni∏
i=1

p(zik|A
(p)
k ) (12)

The procedure is repeated for each of the particles in
the cloud and the weights are then updated to produce an
estimate of the posterior distribution at the current time

w̃
(p)
k ∝ w̃(p)

k−1p(Zk|A(p)
k ) (13)

Residual resampling is carried out whenever the effective
sample size of the particle set falls below 0.5.

Figure 4 illustrates the inverse depth parameterization of
the likelihood function described in Equation 11. It has
been projected onto the depth axis, evaluated for a series
of nominal model depths. For points at shorter range the
function is much more discriminative than for points at
large ranges — directly matching the measurement error
distribution. This allows us to take advantage of Kinect depth
measurements all the away up to 20 meters away.

While this approach is a principled way of utilizing the
noisy long-range Kinect RGB-D data, discretization of the
measurement depth values (ranging (0, 2047)) as well as
texture dependent biases are evident at long ranges (>15m).

In addition to depth information, this method can be
supplemented with basic color information by reading the
color buffer to produce colored model views similar to that
illustrated in Figure 1. By defining a color-based distance
metric, individual color pixels could contribute to the particle
weighting using an extra term in Equation 11. This would
be useful in long shapeless corridors for example.

2) Pure Euclidean Point-to-Plane Function: For compar-
ison to the method proposed above, we also developed a
more traditional likelihood function. It operates in a manner
somewhat similar to the cost function of the Iterative Closest
Point (ICP) by evaluating the Euclidean distance between the

Fig. 5. Illustration the particle pose (green marker) which the best fits
the 3-D map given the current RGB-D data — that is the particle with the
largest likelihood. The blue/green/yellows dots indicate the distance from
each RGB-D data point to the nearest plane (blue is a low distance). In
addition, the orange triangles indicate the poses of the entire particle set.

RGB-D point cloud (transformed by the proposed particle
pose) and the planar submap.

For a given particle A(p)
k , the RGB-D cloud is first

transformed onto the particle pose and the minimum point-
to-plane distance is found by comparing each point, zi(p),
from the cloud to each plane, sj , in the submap mentioned
above

d
(p)
i,min = argmin

j
‖zi(p) − sj‖ (14)

where ‖ ∗ ‖ represents the distance from point to plane.
Given this distance, the individual point likelihood is then

evaluated using a form similar to Equation 11 with the per
particle likelihood again being the product of the individual
point likelihoods.

3) Comparison Between Functions: Both of these meth-
ods demonstrate similar accuracy when there is a good
alignment between the measurements and the building model
(See Section IV-B). While the latter method has been demon-
strated to be significantly more computationally intensive,
additionally it demonstrates a failure mode that our proposed
method does not suffer from.

ICP search is well known to suffer from poor convergence
when incorrectly initialized and the Euclidean-based particle
filter has been observed to demonstrate a similar behavior.
An example situation is that presented in Figure 1. The
method is prone to incorrectly associating depth points from
the wall to the model’s railing — resulting in an incorrect
local minimum and a possible failure of the particle filter.

The likelihood surface for the proposed generative method
does not suffer from this issue as illustrated by the generative
likelihood surface illustrated in Figure 6.

IV. LOCALIZATION EXAMPLES

In this section we will present a number of examples
demonstrating accurate localization in the 3-D map environ-
ment. Five platforms were used: a robotic wheelchair, a Wil-
low Garage PR2 (supplemented with a Kinect), an Ascending
Technologies quadrotor and a man-portable mapping device



X Distance [m]

Y
 D

is
ta

n
c
e

 [
m

]

14121086420

12

10

8

6

4

2

0

Fig. 6. The generative likelihood function evaluated as a contour surface
with 10 cm spacing (in 2D) around the location illustrated in Figure 1
(denoted by the red circle). The walls and railings are in black. The multi-
modal surface has a broad peak at the correct location ensuring stable MCL.

as shown in Figure 7 as well as an RWI B21 wheeled mobile
robot platform.

Each platform had a Microsoft Kinect facing forward. For
all the platforms except the quadrotor an accurate estimate
of the ground truth pose was estimated using posegraph
SLAM and a Hokuyo UTM-30LX laser rangefinder mounted
in the primary plane of motion and was used to estimate the
localization error of the KMCL system. The height of the
sensor varied between 1–2 meters, which demonstrates the
flexibility of this approach.

Fig. 7. Platforms used in testing, from top-right clockwise: man-portable
mapping unit, Willow Garage PR2, quad-rotor and a robotic wheelchair. In
addition an RWI B21 was used but is not shown.

Platform Duration Distance Speed Median Error 3σ %
Units seconds m m/s m %

Man-carried 94 99 1.05 0.66 52
Wheelchair 180 215 1.20 0.48 75
Quadrotor 45 ∼30 ∼0.66 n/a n/a

PR2 266 126 0.47 0.30 0.90
B21 349 152 0.43 0.33 0.84

TABLE I
PERFORMANCE OF THE KMCL ALGORITHM (USING 350 PARTICLES)

FOR THE TRAJECTORIES IN FIGURE 8.

A. Illustrative Results

For each platform a dataset was collected and post-
processed using the KMCL algorithm to generate the trajec-
tories illustrated in Figure 8 which also indicates the ground
truth estimated using the LIDAR on each platform. Table I
presents some numerical results for 350 particles.

No major failures of the localization algorithm occurred
in these experiments (i.e. the entire particle set diverging),
although troublesome locations containing little or no visual
or geometric features do exist within the building - such
as long corridors or blank walls. In these locations the
particle set naturally disperses somewhat until some con-
clusive geometric information is observed, at which point
the particle distribution coalesces to a single mode and
continues accurate tracking. These situations, despite being
representative of the underlying position uncertainty, result
in an increased error result in Table I and Section IV-B. For
small particle sets these situations can also result in particle
filter divergence (as discussed in Section IV-B).

The error metrics we chose were median absolute error and
the percentage of SLAM poses lying within a 3σ interval
of the weighted particle mean. As indicated in the table,
typical median error is of the order of 40 cm. This value is
inflated due to poor performance in the aforementioned lo-
cations. While Table I seems to indicate increased error with
increased speed, we believe that improved VO integration
will reduce this effect.

In particular the data for the map-portable exhibits signif-
icant motion blur and frequent visual odometry failure; thus
the results with this system indicate the robust nature of our
approach. Additionally the quality of the 3-D map and the
choice of image downsample factor are other parameters that
could be studied so as to improve performance further.

B. Performance Evaluation

To fully quantify the performance of our algorithm we
carried out a series of Monte Carlo runs using the dataset
collected with the robotic wheelchair. Varying the number
of particles from 12 to 400, the algorithm was run on a
3 minute, 215 meter dataset for 20 independent runs. This
represents a total of 15 hours of computation time.

The results of each run were compared to the LIDAR pose
of the robot aligned with the particle filter pose trajectory. In
Figure 9 we present our results. The results give an indication
of the accuracy of the proposed algorithm as well as its
stability for different numbers of particles.



(a) Floor Plan

−10

−5

0

5

10

15

20

25

15 20 25 30 35 40 45 50 55 60

X
 D

is
ta

n
c
e

 [
m

]

Y Distance [m]

 

 

KMCL

Lidar SLAM

Map

(b) Willow Garage PR2

−10

−5

0

5

10

15

20

25

15 20 25 30 35 40 45 50 55 60

X
 D

is
ta

n
c
e
 [
m

]

Y Distance [m]

 

 

KMCL

Lidar SLAM

Map

(c) Map Portable Device

−10

−5

0

5

10

15

20

25

15 20 25 30 35 40 45 50 55 60

X
 D

is
ta

n
c
e
 [
m

]

Y Distance [m]

 

 

KMCL

Lidar SLAM

Map

(d) Robotic Wheelchair

Fig. 8. Top-down view of mapping performance for three of the robots localizing using the same map (non-simultaneously). The main walls in the map
are shown in blue while each robot’s Kinect MCL output is shown with a red line. Black dots indicate the ground truth position during the runs (estimated
using LIDAR SLAM) — which indicates accurate localization.

In summary we observed roughly equivalent localization
accuracy with equal numbers of particles — with the Eu-
clidean likelihood function being slightly more accurate.
The major difference between the two methods was in the
computation requirements. For 100 particles and a frame
rate of 10 Hz, the generative method is real-time while the
Euclidean method is 5 times slower than real-time. The slow
pace of the Euclidean likelihood precluded us from testing
with 200 and 400 particles (where the gap was even wider).

Stable real-time operation with 350 particles has been
realized on a 4-core 2.53GHz Pentium Core2 powered laptop
with an Nvidia Quadro 1700M with 32 Cores — utilizing
one CPU core each for data capture and visual odometry and
Monte Carlo localization split between each architecture and
processing at an effective rate of 7–8Hz. In regions of low
uncertainty as few as 10 particles are required for opera-
tion. Implementation of an adaptively resizing particle cloud
would be useful in such circumstances [15]. We envisage
some straightforward optimizations (such as submapping)
will allow for 1000 hypotheses in realtime for challenging

locations.
Finally we would like to reemphasize that only the RGB-

D Kinect sensor was used in all of these experiments so as to
demonstrate the robustness of Monte Carlo localization with
such a low cost sensor. Additional sources of odometry such
as wheel odometry or an IMU would of course have been
used to improve the prediction model and to address loca-
tions in which the visual odometry fails, as mentioned above.
We have avoided doing so for simplicity and generality.

V. CONCLUSIONS AND FUTURE WORK

This paper presented an algorithm for the extraction of
a geometrically-accurate building model built using planar
segments extracted from RGB-D data from the low cost
Microsoft Kinect. The model was then used to localize a
series of robotic and mapping platforms moving within the
mapped environment using a particle filter and only the data
from the RGB-D sensor.

Our results illustrate that Kinect-based localization is ac-
curate and robust to the failure of its sub-systems, as well as



12 25 50 100 200 400
0

0.5

1

1.5

2

2.5

3

3.5
M

e
d
ia

n
 E

rr
o
r 

[m
]

Number of Particles

 

 

12 25 50 100 200 400
0

0.2

0.4

0.6

0.8

1

%
 I
te

ra
ti
o
n
s
 w

it
h
in

 3
σ

 o
f 
G

ro
u
n
d
 T

ru
th

Number of Particles

Euclidean − Individual Runs

Euclidean − Mean of 20 Runs

Generative − Individual Runs

Generative − Mean of 20 Runs

Fig. 9. Performance metrics for both likelihood functions (averaged for
20 separate runs). Typical performance for 100 particles is of the order of
0.5 m median error and 78% of estimates within 3σ of the true location.
Note that for some failed runs with low particle numbers the median error
is greater than 3.5m.

12 25 50 100 200 400
0

2

4

6

8

10

12

14

Number of Particles

F
ra

m
e
 R

a
te

 o
f 
Im

p
le

m
e
n
ta

ti
o
n
 [
H

z
]

 

 

Euclidean

Generative

Fig. 10. Timing statistics for both likelihood functions. In the case of the
later, real time operation (at 10Hz) has be achieved with 100 particles and
the frequency reduces linearly with the number of particles.

operating in realtime. The application area of this approach
is wide: including not just traditional robotic localization but
many wearable and virtual reality applications.

One of the primary novelties of this work is the use of
a generative measurement model to simulate range images
which are then directly compared to the measured RGB-
D image. This GPU-based approach is significantly quicker
than a more traditional ICP-like method. While the map-
portable system and the quadrotor datasets present some
variation in roll, pitch and height; we have not as yet
extended this system to completely free 3-D motion. This
extension is the focus of our future research.

Failure modes of the proposed algorithm include insuffi-
cient lighting for VO and incomplete and incorrect building

maps. Bag-of-words (BoW) algorithms [16] will provide
recovery from these failures modes. We envisage that when
a location is suggested by the BOW algorithm, it can be used
to propose new particle locations and to resolve localization
ambiguity. Finally, closed loop operation of the algorithm is
also being investigated on some of the platforms mentioned
above.

VI. ACKNOWLEDGMENTS

This project makes significant use of the Point Cloud
Library [17] and the Sequential Monte Carlo Template
Class [18]. Thanks to Abraham Bachrach, Albert Huang
and Daniel Maturana and Nick Roy for collection of the
quadrotor dataset and for use of the FOVIS library and Matt
Walter, Sachithra Hemachandra, Jon Brookshire and Seth
Teller for the robotic wheelchair dataset and development
of the man-portable mapping device.

REFERENCES

[1] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo lo-
calization for mobile robots,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), May 1999.

[2] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo
localization for mobile robots,” Artificial Intelligence, vol. 128, May
2001.

[3] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous Robot Vehicles, pp. 167–193,
Springer Verlag, 1990.

[4] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping with fluid
relinearization and incremental variable reordering,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), (Shanghai, China), May
2011.

[5] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2D and 3D map-
ping,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
(Anchorage, Alaska), May 2010.

[6] A. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight
using an RGB-D camera,” in Proc. of the Intl. Symp. of Robotics
Research (ISRR), (Flagstaff, USA), Aug 2011.

[7] J. McDonald, M. Kaess, C. Cadena, J. Neira, and J. Leonard, “6-
DOF multi-session visual SLAM using anchor nodes,” in European
Conference on Mobile Robotics, (Örbero, Sweden), Sept 2011.

[8] J. Yao, P. Taddei, M. R. Ruggeri, and V. Sequeira, “Complex and
photo-realistic scene representation based on range planar segmenta-
tion and model fusion,” Intl. J. of Robotics Research, pp. 1263–1283,
2001.

[9] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei,
I. Posner, R. Shade, D. Schroter, L. Murphy, W. Churchill, D. Cole,
and I. Reid, “Navigating, recognising and describing urban spaces with
vision and laser,” Intl. J. of Robotics Research, vol. 28, Oct 2009.

[10] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems,” in Proc. of the ICRA 2010 Work-
shop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, (Anchorage, AK, USA), May 2010.

[11] N. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” vol. 140, pp. 107–
113, 1993.

[12] S. Nuske, J. Roberts, D. Prasser, and G. Wyeth, “Experiments in
visual localisation around underwater structures,” in Field and Service
Robotics (A. Howard, K. Iagnemma, and A. Kelly, eds.), vol. 62 of
Springer Tracts in Advanced Robotics, pp. 295–304, Springer Berlin
/ Heidelberg, 2010.

[13] R. Wright, B. Lipchak, and N. Haemel, OpenGL SuperBible: Com-
prehensive Tutorial and Reference. Addison-Wesley Professional,
fourth ed., 2007.



[14] L. A. Clemente, A. J. Davison, I. Reid, J. Neira, and J. D. Tards,
“Mapping large loops with a single hand-held camera,” in Robotics:
Science and Systems (RSS), Jun 2007.

[15] D. Fox, “Adapting the sample size in particle filters through KLD-
sampling,” Intl. J. of Robotics Research, vol. 22, pp. 985–1003, Dec.
2003.

[16] M. Cummins and P. Newman, “Highly scalable appearance-only
SLAM - FAB-MAP 2.0,” in Robotics: Science and Systems (RSS),
(Seattle, USA), Jun 2009.

[17] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in icra, (Shanghai, China), May 2011.

[18] A. M. Johansen, “SMCTC: Sequential Monte Carlo in C++,” Journal
of Statistical Software, vol. 30, pp. 1–41, 4 2009.


