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Abstract— This work presents a fully integrated system for
reliable grasping and manipulation using dense visual mapping,
collision-free motion planning, and shared autonomy. The
particular motion sequences are composed automatically based
on high-level objectives provided by a human operator, with
continuous scene monitoring during execution automatically
detecting and adapting to dynamic changes of the environment.
The system is able to automatically recover from a variety of
disturbances and fall back to the operator if stuck or if it cannot
otherwise guarantee safety. Furthermore, the operator can take
control at any time and then resume autonomous operation.
Our system is flexible to be adapted to new robotic systems,
and we demonstrate our work on two real-world platforms –
fixed and floating base – in shared workspace scenarios.

To the best of our knowledge, this work is also the first
to employ the inverse Dynamic Reachability Map for real-
time, optimized mobile base positioning to maximize workspace
manipulability reducing cycle time and increasing planning and
autonomy robustness.

I. INTRODUCTION

The level of autonomy of a robot is directly correlated

with the predictability of the task and environment. Robots

executing a predictable task in a foreseeable environment

such as in a factory setting work fully autonomous, while for

field robots where variance is high, teleoperation is still the

accepted gold standard with the human as the decision maker

and the robot acting as an extension of the human operator.

Many applications in industry are repetitive and require high

levels of concentration and manual dexterity, often coupled

with the human operator solely performing scene monitoring

as well as hazard detection and prevention. As such, the

operator is prone to fatigue that has been linked to serious

accidents in the past. As a result, research has investigated

guided teleoperation with on-the-fly synthesized constraints

to provide assistance or resistance via force feedback –

for instance in surgical robotics, e.g. via virtual fixtures.

This guidance and protection of sensitive areas leads to a

reduction in the concentration devoted to the task as it relaxes

the mental criteria for task success and failure [1].

Different state-of-the-art teleoperation and shared auton-

omy approaches have been demonstrated at the DARPA
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Fig. 1. The bimanual mobile manipulator executing a shared workspace
task: model-free segmentation of target objects with automatic mobile base
placement selection and navigation to place them in a bin. The system
automatically adapts to various dynamic changes, including changing object
and target locations during execution as well as scene monitoring for safe
avoidance and replanning of motion to accommodate human operators.

Robotics Challenge (DRC) Finals in July 2015 for controlled,

mostly static environments (“high-level repeatable and low-

level adaptable”, [2]). However, more or fully autonomous

systems are challenging in dynamic and unpredictable en-

vironments with clutter due to the sheer complexity of

dealing with rare events. Shared autonomy is often perceived

as a middle ground, combining autonomous sequences by

the robot with input from a human operator for high-level

decision making reducing cognitive load and leading to more

reliable systems.

These systems are especially important for manipulation

and exploration in hazardous applications, such as for space

exploration or disaster recovery with high-latency, low band-

width communication and intermittent transmission cut-outs

making teleoperation impractical. Furthermore, we argue that

shared autonomy is key to complement high-level human

direction with high-frequency, closed-loop dexterity of a

robotic system.

A. Background

We refer to teleoperation as a control method of a robot

that directly maps operator input to robot actions. An au-

tonomous robot is an agent that perceives its environment,

forms decisions based on its perception of the world, and

realizes actions according to these decisions. We define

shared autonomy, similar to Sheridan in [3], to be a blend

of teleoperation and autonomy that realizes robot actions.



Several applications for teleoperation using immersive

virtual reality head-mounted displays and remote controllers

with haptic feedback have been demonstrated in recent

years [4], [5], e.g. with the PR21 and Baxter2 robots. While

the former used low-cost, consumer-grade hardware such as

the Oculus Rift, the SRI Taurus Dexterous Robot3 is an

example of military-grade, immersive teleoperation equip-

ment for Explosive Ordnance Disposal (EOD) tasks. Fok et

al. [6] successfully demonstrated the feasibility of web-based

teleoperation by having inexperienced human operators in-

terface with a humanoid robot through a web browser on a

smartphone to complete a bimanual telemanipulation task.

Extensive studies have been performed to deduce the key

aspects of robot control methods that must be developed

towards successful shared autonomy systems. The DRC

has been the largest demonstration of the state-of-the-art in

disaster response robotics, where most systems implemented

some form of shared autonomy. Yanco et al. [7] identified the

desired attributes of a shared system and highlighted specific

design guidelines for being successful at the DRC, arguing

that the design of a user interface is of high importance in

regards to the overall success of a task.

The DIRECTOR interface and system architecture used

to control the ATLAS robot, developed by Team MIT, is

described in [8] and [9] respectively. It features a shared

autonomy system backed by interactive, assisted percep-

tion, and trajectory optimization-based motion planning [10]

where task sequences can be created from high-level motion

primitives and constraints. The operator (or multiple oper-

ators) maintains a supervisory role, pausing execution and

adjusting affordances and constraints in response to changes.

A similar approach has been taken by Team ViGIR which

fitted affordance templates with semantic actions [11], [12].

They also used a virtual robot model for planning and review

in a supervised semi-autonomous approach.

The JPL Team details their hardware design, algorithms,

and system for ROBOSIMIAN in [2] and [13]. Their semi-

autonomous system utilizes a behavior planner and stored

motion primitives along with nonlinear trajectory optimiza-

tion and review and approval of candidate plans by a human

supervisor, with the operator also assisting in object fitting.

Similar semi- and shared autonomy systems have been

developed to carry out related tasks. Stückler et al. [14]

use motion key frames generated by an operator based

on segmented perception data with the autonomous system

interpolating between key frames given constraints. Walter et

al. [15] describe an autonomous forklift able to operate safely

in a shared workspace with humans accepting task-level

commands through natural language and pen-based gestures.

A high level control method implementing shared autonomy

for debris clearance is presented by Kaiser et al. [16] where

the system proposes affordances and actions for the operator

to select and command.

1Cf. http://ros.org/news/2013/09/pr2-surrogate.html
2Cf. https://www.youtube.com/watch?v=JHIz-Y5qCmY
3Cf. https://www.sri.com/engage/products-solutions/

taurus-dexterous-robot

B. Challenges

Key challenges for autonomous operation in unstructured

real world environments include:

• Perception: Segmenting objects from single-view 2.5D

data often fails in real-world settings due to misalign-

ments and the limited area observed. This is exacerbated

when the target affordance is occluded or part of the

robot geometry further obstructs the view.

• Robust and fast motion planning: Synthesizing

collision-free motion which handles the robot’s

redundancy (or lack thereof) to solve a task as well as

work with real sensor data.

• Dynamic changes: Causing created plans or motion

under execution to be in collision, requiring adaptive

change or soft stopping and replanning.

• Environment representation and collision checking: Ar-

tifacts in real sensor data can lead to spurious planning

failures, with approaches often resorting to disabling

collision checking and having a human do the verifica-

tion of the final trajectory.

• Computation, memory, and communication: Real-world

scenarios impose constraints from available on-board

computing power and memory with online planning

capability and feature communication constraints to a

remote operator, resulting in a trade-off of between

algorithm and solution quality and execution speed.

C. Overview

In this work we present a fully integrated shared auton-

omy system with environment mapping, autonomous stance

selection and navigation, model-free object segmentation,

automatic grasp affordance selection, collision-free motion

planning and execution, and continuous, dynamic scene

monitoring and failure recovery (Section II).

In particular we expand on prior work on shared auton-

omy [8] by

1) Incorporating dense visual mapping to capture and

fuse multiple views and sensors into a dense, 3D

representation of the workspace to increase robustness

of model-free affordance segmentation algorithms.

2) Integrating scalable and robust collision-free motion

planning using our proposed efficient, hybrid scene

representation.

3) Adding environment awareness and adaptation to dy-

namic changes through continuous scene monitoring

with failure recovery enabling safe operation in shared

workspaces.

4) Selecting an optimized base position for floating-base

robots to maximize manipulability and decrease cy-

cle times; the first employment of inverse Dynamic

Reachability Maps [17] to improve the robustness of

autonomous motion planning and execution.

We demonstrate the flexibility and adaptability of our

system in experiments with an industrial manipulator and

a mobile bimanual robot (Section III, Figure 1).



II. SYSTEM ARCHITECTURE

In this section we describe the core components of our

integrated shared autonomy system: perception (Section II-

A), continuous scene monitoring (Section II-B), a shared

autonomy user interface (Section II-C), and collision-free

motion planning (Section II-D). We additionally detail ex-

tensions required to apply this framework to a mobile robot

(Section II-E). The full system is shown in Figure 2.
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Fig. 2. Overview of the implemented system.

A. Perception

At the core of our perception subsystem is a continuously

updated map encoding free, occupied, and unknown space

in an accurate, dense yet memory-efficient representation of

the environment.

1) Filtering: In order to reduce artifacts which hinder the

reliability of motion planning and object segmentation algo-

rithms, raw RGB-D and block-matched stereo sensor data is

filtered in a preprocessing step to remove self-observations,

shadow points and noise. Multiple pointcloud sources can be

adjoined and fused. The pre-processing pipeline is shown in

Figure 3. In a first step, a pass-through and downsampling

filter is applied into the sensor z-direction to cut out noisy

areas which are far away (beyond the area of interest) or too

close for the sensor to provide reliable readings as well as to

regularize samples onto a voxelgrid. It also removes invalid

points and mixed pixels. In a second step, the pointcloud

is projected into the robot base frame and measurements

outside the work area are filtered, before self-observations are

removed and unconnected patches eliminated via a statistical

outlier removal. Measurements from multiple pointcloud

sensors, here a stereo camera and a RGB-D sensor, are fused.
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Stereo Camera
(PointGrey Bumblebee)

Downsample
(VoxelGrid)

Downsample
(VoxelGrid)

Robot 
Self-Filtering

Statistical 
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Fig. 3. Filter chain from raw RGB-D and blockmatched stereo data to data
ready for insertion into the map.

(a) (b)

Fig. 4. Scene representations during the experiments: (a) Bimanual mobile
manipulator with octomap used for planning, (b) Dual representation for
fixed-base manipulator: Dense, visual map for segmentation shown on the
left, and octomap for planning to the right.

2) Hybrid Environment Representation: The preprocessed

and adjoined pointcloud is fused into a memory-efficient,

probabilistic octree-based scene representation [18] that al-

lows for change detection. Where available, we additionally

fuse information from force/torque or fiducial sensing into

the same environment map for collision detection.

In order to make use of multiple views to increase object

segmentation and grasp affordance robustness, a dense, high

resolution map based on the Truncated Signed Distance

Function is created [19], an example of which is shown

in Figure 10a. In the example of a highly repeatable and

accurate fixed base manipulator with end-effector mounted

pointcloud sensor, we replaced visual tracking with forward

kinematics to increase mapping speed and reduce cycle

times.

This dual environment representation (Figure 4) allows

efficient collision avoidance, change detection and tracking

while providing a high fidelity fused map for accurate model-

free affordance segmentation.

3) Segmentation: Crucially, the perception system needs

to be able to extract objects of interest based on high-

level user input and without prior models. These affordances

will be segmented from the higher resolution representation

resulting in a more accurate modeling of the areas of

interest. This produces an efficient, hybrid representation of

segmented affordances and a dense, discretized environment

occupancy map for planning and autonomy.

In order to segment objects of interest without a prior

model, we use a combination of geometric insights and task-

informed assumptions in an algorithm similar to [20]. First,

we assume that objects of interests are placed on an approxi-

mately horizontal surface and have sufficient clearance from

one another for a gripper to pass between to pick them up.

This allows us to use segmentation by normals to extract a

large, continuous plane (e.g. table/shelf) and then Euclidean

clustering to extract clusters distinct of individual objects.

We then reconstruct a mesh through triangulation and fit

an approximate bounding box shape primitive affordance

annotated with candidate grasps to the mesh. The whole

process can be seen in Figure 10 in Section III-A.



B. Continuous Scene Monitoring

Fig. 5. The implemented scene monitoring utilizing different perception
modalities: visual RGB-D data, tactile, and joint effort sensing. Diagram
showing modules active during Experiment 1 (Kuka LWR).

Key to safe operation in shared workspaces is the ability

to identify whether dynamic changes affect the intended

robot motion. We hereby distinguish between changes that

alter targets and affordances triggering replanning as well as

updates which affect the safe and collision-free execution of

the motion.

The continuously integrated discretized occupancy map is

the basis for tracking changes. Our scene monitoring and

reasoning (shown in Figure 5) hereby works similar to the

one described in [21]. Instead of analyzing a sequence of

swept volumes, we check the key poses of the trajectory cur-

rently being executed directly against the collision map and

changed areas upon every map update. This choice enables us

to efficiently run scene monitoring collision queries on CPU

on-board at sensor frame rate, with the GPU free to be used

e.g. for dense visual mapping. If a collision of a future key

pose with the map update is detected, we halt the execution

and fall back to the human operator. In the meantime, the

scene continues to be monitored and motion execution is

resumed once the trajectory would be collision-free again.

Alternatively, a replanning is triggered on expiration of a

countdown.

C. Shared Autonomy

A shared autonomy user interface serves as an abstraction

layer above task complexity and allows the user to provide

high-level objectives, gives feedback as well as involves the

operator in decision-making if necessary.

Our shared autonomy builds on the task execution system

described in [8] which fills a sequence of task primitives with

details acquired through operator-assisted perception online.

The operator can review, pause, and amend the execution

at any time, and the autonomous mode can be resumed

immediately after a phase of manual operation.

We expand on [8] to extend the task sequence system with

automatic review and approval of planned motions through

continuous scene monitoring and reasoning to reduce the

amount of human intervention required, and only fall back to

the operator when absolutely necessary. In order to achieve

this, a task tree with task dependencies is defined that is

automatically expanded to synthesize sequences comprised

of high-level action primitives in response to perception input

and changes in the environment.

Each high level task primitive is automatically expanded

into a series of verifiable low-level tasks, and the success cri-

teria associated with each action are monitored. For instance,

grasping is executed as a power grasp with force, tactile,

or visual feedback serving as a success/completion criterion

with visual inspection for recovery. Automated reasoning

immediately starts execution of valid trajectories to reduce

cycle time.

D. Collision-free Motion Planning

Our system uses a combination of sampling- and

optimization-based planning algorithms from the Extensible

Optimizaton Toolkit (EXOTica [22]) to synthesize collision-

free manipulation trajectories. Using affordances and oc-

cupancy grids from our perception module (Section II-A,

Figure 4), motion planning problems are centered around

constraint sets [23] that can be composed to represent

high-level objectives. Given an environment and reacha-

bility and manipulation constraints of an affordance, an

optimization-based inverse kinematics solver [10] computes

a goal configuration qgoal. Given start and goal configura-

tions qstart,qgoal, RRT-Connect is used to find a trajec-

tory [24], [25].

E. Extension to Floating-Base Systems

The system discussed so far is generic and was ex-

perimentally applied to and validated with a fixed-based

manipulator. In the following paragraphs, we will highlight

additional components required to extend this system to

mobile, floating-base robots.

The kinematic reachability of low-cost, non-redundant

mobile platforms is often limited by potential self-collisions,

mounting points, and complex environments (cf. Figure 8 for

a reachability map similar to [26] showing the manipulability

of our mobile manipulator platform).

Fig. 6. The shared autonomy task panel view for the table clearing task. A
third-person surveillance camera view is shown alongside with the expanded
task tree. Manual intervention actions are accessible via buttons on the right
panel. The progress through the task tree is visualized at every stage and the
operator can pause and manually step through execution, as well as resume
autonomous operation. A confirmation dialog is presented if the system falls
back to the operator for approval if it is not confident it can proceed safely.



Fig. 7. The user interface for the bimanual mobile manipulator showing
live perception data, segmented objects and fitted affordances as well as
candidate plans (gold). Situational awareness camera data is shown in
the shared autonomy panel which automatically executes the candidate
trajectory if deemed safe by the continuous scene monitoring. The operator
can manually pause and step as well as adjust affordances and plans in the
interactive user interface.

1) Optimized Floating Base Positioning: In order to in-

crease manipulability, we leverage the mobile base to reposi-

tion the manipulator based on intended motion plans. We se-

lect an appropriate standing pose to maximize manipulability

using inverse Dynamic Reachability Maps (iDRM), the first

time it is being applied to improve autonomous operation,

reduce cycle time, and increase robustness. Maximizing

manipulability is important to cope with dynamic change

and perception inaccuracies to an extent as it maximizes the

likelihood that nearby task space areas can be reached with

the same base placement.

We recap the core principles of the iDRM algorithm as de-

scribed in [17]. During an offline preprocessing step, a large

number (millions) of self-collision-free robot configurations

are generated and transformed such that the end-effector is

at the origin of a voxelgrid. Configurations which can reach

a voxel with the end-effector at the origin are stored in

the reach list of the corresponding voxel. Unlike previous

algorithms for floating base placement, iDRM stores voxels

occupied by configurations in an occupation list during this

offline step such that only a single collision query is required

to find the voxels which are occupied in the environment

representation and filter associated configurations. The re-

maining subset of the iDRM is collision-free and the most

suitable end-pose for the task, i.e. a collision-free base

location from where the robot can achieve the desired end-

effector pose with highest manipulability, can be selected

based on a pre-calculated manipulability score. It was shown

in [17] that iDRM is able to find valid end-poses in real-

time in complex environments, which can then bootstrap

bidirectional motion planning algorithms. Thus, the end-

pose information, which is normally provided by a human

operator, is crucial for robot autonomy by reducing planning

failures and increasing the overall success rate.

2) Navigation: During mobile manipulator experiments,

we used a front-mounted horizontal laser rangefinder for

navigation and localization against a static map (Adaptive

Monte-Carlo Localization [27]).

Goal base positions pgoal are computed using iDRM and

(a) Backview (b) Topdown view

Fig. 8. Reachability map for the dual-arm mobile manipulator used during
our experiments. The mounting point and non-redundancy of the individual
arms severely restricts workspace manipulability, while the compact con-
struction means that sensor placement and highly manipulable workspace
are not always aligned highlighting the usefulness and need for intelligent
mobile base positioning to maximize task success.

passed to the ROS navigation stack which provides cost map

generation and path planning out-of-the-box.

III. SYSTEM EVALUATION

We validated the flexibility and adaptability of our system

with hardware experiments on two different platforms. First,

we use a 7-DoF Kuka LWR3+ manipulator with a Schunk

SDH dexterous hand to clear a table. For perception, an

Asus Xtion Pro Live RGB-D sensor is mounted on the

end-effector for dense visual mapping and continuous scene

monitoring. Second, we use a bimanual Clearpath Husky

with two 6-DoF Universal Robot UR5 manipulators fitted

with Robotiq 3-finger grippers to clear a scene. For this

system, the perception is based on an identical Asus Xtion,

a PointGrey Bumblebee2 stereo camera, and a Sick LMS-

100 LIDAR sensor. All sensors are mounted on-board the

respective platform; no external sensing/perception is used.

For the industrial manipulator, computation is carried out

on a personal computer with an Intel Core i7-4770 @ 3.4

GHz CPU, 16GB 1600 MHz DDR3 memory, and a Nvidia

GeForce GT645 GPU. For the experiments with the bimanual

mobile manipulator, most computation is performed on-

board the robot (Intel Core i5-4570TE @ 2.7 GHz with

8GB 1600 MHz DDR3 RAM), with mapping, planning, and

shared autonomy offloaded to the operator workstation (same

as above). Inter-process communication is maintained using

ROS and LCM [28], with on-board compression allowing the

operation via a wireless link without line of sight. Thereby,

peak bandwidth use for streaming two depth and three

situational awareness camera feeds beyond telemetry and

lidar is approximately 3 MB/s. This allows for experiments

with a blend of teleoperated and autonomous sequences with

no line of sight as depicted in Figure 9.

In our experiments, we illustrate that by using the same

system architecture we are able to generalize the manip-

ulation and continuous scene monitoring skills of a fixed

base robot to a floating base system with two arms. As it

is evident, the mobile robot requires additional components

compared with the fixed-base manipulator, which allow us

to take full advantage of its advanced capabilities.



(a) Map (b) Clusters (c) Meshes (d) Affordances in Map

Fig. 10. Steps of our model-free affordance segmentation pipeline: Starting with a dense visual map, a table surface and clusters distinct point clusters
are extracted, and meshes fit via triangulation. Finally, primitive shape affordance are fit to the meshes and annotated with possible grasps.

A. Experiment 1: Table Clearance with a Kuka LWR arm

The first experiment is an autonomous table clearance

task wherein the robot proceeds to identify objects on a

surface given a single point on that surface and synthesize

a plan for clearing the table. A dense visual map is created

through volumetric fusion and objects and affordances are

segmented (Figure 10), with the corresponding occupancy

grid for collision-free motion planning shown in Figure 4b.

The shared autonomy interface is shown in Figure 6. In this

set of experiments, tactile information from the gripper is

used during grasping and joint effort sensing used as part of

the continuous scene monitoring, cf. Figure 5.

B. Experiment 2: Autonomous Scene Clearance with a bi-

manual Clearpath Husky

In the second experiment, a mobile manipulator picks

up objects in a shared workspace with humans and places

them into a garbage bin (Figure 1). The input from the

operator is limited to providing a single point in the scene

denoting the surface for the robot to clear. This experiment

is verified with two different scenarios, where the robot uses

either one or both arms depending on the number of objects

placed on the designated surface. Each of the two scenarios

have been tested with more than 20 different variations

of the environment, including different objects, tables, and

configurations of the furniture. Samples of these executions

are shown in the accompanying video (https://youtu.

be/5jFU7oCP4vk). A striking feature of the proposed

shared autonomy system is its capability to automatically

determine the number of end-effectors required to efficiently

pick the objects from the surface. Furthermore, in the case

of multiple objects, it automatically determines whether

Fig. 9. Navigation and recovery task with no line-of-sight and restricted
communication with teleoperated as well as autonomous sequences.

both are reachable simultaneously through optimized base

positioning using iDRM, and it leverages the floating base

to reduce cycle time.

In the following, we detail the tasks during operation and

how they are divided between the robot and the operator. It

is worth noting that operator tasks only convey high level

goals and confirmations to the robot.

1) Operator provides a point on surface to be cleared.

2) Perception segments the scene and identifies the num-

ber of objects on the surface.

3) iDRM computes an end-pose to grasp the objects.

4) Robot navigates to the base pose provided by iDRM.

5) Operator verifies that the robot has navigated to the

area within the vicinity of the target surface and

confirms the surface by again providing a point.

6) Perception re-segments the scene in order to ensure

that its plans remain compatible with any changes.

7) Robot plans and executes arm motions to grasp the

object in three substeps, first to reach pre-grasp frame,

then to grasp frame and finally grasps the object.

8) Operator verifies that the object(s) has been grasped.

9) Robot moves its arms in driving configuration while

searching for the bin and navigates to it.

10) Robot drops the objects in the bin.

1) Scenario 1: Single object on surface: In this scenario,

we show the robot removing an object from the indicated

surface. Once the target surface has been provided by the

Fig. 11. The scene monitoring continuously integrates fused and filtered
sensor data in an OctoMap and reasons about changes: Here, a human
reaches into the robot workspace crossing the planned trajectory (shown in
blue), and the robot halts execution (robot state shown in red).



(a) (b) (c)

Fig. 12. (a) Single arm end-pose computed by iDRM. The red and green
squares illustrate the variety of different base poses that satisfy the six-DoF
constraint to reach the pre-grasp end-effector frame. (b) Dual arm end-pose
computed by iDRM. In this scenario there are limited feasible base poses,
hidden under the robot, that satisfy the two six-DoF constraints, one for
each arm. (c) Single arm end-pose computed by iDRM reaching only the
red object. Note that given this pose the blue object is not reachable by the
right arm.

operator, the robot automatically segments the scene and

identifies that only one object is placed on the surface. Thus,

the iDRM module provides whole-body end-pose solution

using only the left arm, as shown in Figure 12a.

In the accompanying video, we clearly demonstrate that

the robot is also able to cope with dynamic changes of the

scene such as relocation of the target object and the bin.

Further, our scene monitoring is demonstrated in the

accompanying video and in Figure 11. During execution,

the workspace is monitored and motions are paused as soon

as future trajectory waypoints stop being collision-free. The

map updates at 13 Hz at a 3cm resolution (i.e. at frame

rate – the sensor data is being captured at 15 Hz) with the

verification whether the future trajectory key waypoints are

collision-free running consuming approximately 50ms. Note,

that this speed and interactivity can be scaled with the oper-

ating velocity of the manipulators by decreasing workspace

voxelgrid resolution and an increased safety margin/padding.

2) Scenario 2: Two objects on surface: In the second

scenario, the robot removes two objects from the indicated

surface. The robot identifies autonomously the number of ob-

jects on the surface and utilizes the iDRM module to obtain

a solution which satisfies a whole-body end-pose, reaching

both objects simultaneously, as shown in Figure 12b. On the

other hand, as shown in Figure 12c, if one were to first obtain

a solution for the red object and subsequently for the blue,

the robot would have to re-navigate to a new base-pose to

reach the blue object with the right arm.

Analysis of task-wise timing

In Figure 13a and Figure 13b, we provide a detailed timing

in a cumulative fashion for each task described above during

the single object and the bimanual scenario respectively. As

it is evident from both figures, the interaction time of the

operator, colored in red, is minimal during the successful

completion of the experiments. In addition, it is worth noting

that the duration of the planning steps is negligible and most

of the time is spent on execution. Execution times are large,

due to the very restrictive velocity limits we are using to

align with safety standards when the workspace is shared

between a robot and a human.

IV. DISCUSSION

The proposed shared autonomy system has been demon-

strated to complete tasks with minimal high-level user input

operating autonomously for the majority of the execution.

It is able to deal with dynamic changes, such as updates of

the target affordance or bin location, as well as an obstacle

or human entering its shared workspace by safely pausing,

replanning, and resuming motion execution.

Our scene monitoring can be added on top of many motion

planning and execution pipelines and runs at 20 Hz on

CPU, which is responsive enough for operation on a moving

platform. Work by Hermann et al. [21] checks swept volumes

of trajectories on the GPU with additional predictive tracking

of obstacles at 6-8 Hz and with replanning using a library

of motion primitives. As a result, they interactively adapt

the execution speed or interrupt motion if in collision. For

our applications on mobile platforms where battery power is

limited and a top-of-the-line GPU unlikely to be installed, the

proposed scene monitoring is more applicable, yet pausing

and replanning may result in short interruptions.

Selecting a suitable mobile base position improved auton-

omy robustness and adaptability to changes by maximizing

manipulability. Especially in the second scenario, due to the

appropriate placement of the base, both objects can be picked

at once optimizing the execution time for any one reaching

task. Inverse reachability maps have been previously used

for instance during the DRC Trials [12]. Using the state-

of-the-art iDRM algorithm which moves collision checking

to the offline preprocessing phase, enabled real-time, inter-

active end pose queries during both teleoperation as well

as increased robustness for our autonomous runs. However,

the physical size of the workspace and robot model required

large amounts of runtime memory to cover only a part of the

workspace of the robot: for our single-arm experiments, we

used 230k samples which translated to 520 MB memory, and

the 1.3M samples of the bimanual dataset consumed 3.1 GB.

V. CONCLUSION

We have presented a robust shared autonomy system

with continuous scene monitoring incorporating dense visual

mapping, collision-free motion planning, and environment

awareness. We furthermore present the first employment of

iDRM [17] to improve the robustness of autonomous motion

planning and execution by selecting a mobile base position

which maximizes manipulability. The implemented contin-

uous scene monitoring ensures safe execution of planned

motion. It also paves the way for continuous adjustment of

behavior according to changes in the environment, and en-

ables fast and accurate manipulation allowing recovery when

potential conflicts are detected during motion execution.

Future work includes continuous adaptation and local

replanning of motion trajectories in response to environment

changes captured by our scene monitoring, and to incorporate

motion flow and predictive tracking similar to [21]. Addition-

ally, we are interested in incorporating a novel improvement

of dynamic reachability maps [29] leveraging hierarchies

in the kinematic structure to reduce memory requirements



(a) Scenario 1 - Single object (b) Scenario 2 - Two objects

Fig. 13. Time taken by individual steps during the experiments. Operator input is shown in red and the autonomous behavior is shown in black. Grey
indicates the cumulative experiment time up to the start of the current step.

by several orders of magnitude allowing complete maps for

reachability and motion planning to be stored in memory at

runtime.
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