
Pronto: a Multi-Sensor State Estimator for
Legged Robots in Real World Scenarios
Marco Camurri 1,∗, Milad Ramezani 1, Simona Nobili 1,2 and Maurice Fallon 1

1Dynamic Robot Systems, Oxford Robotics Institute, Department of Engineering
Science, University of Oxford, Oxford, UK
2University of Edinburgh, Edinburgh, UK
Correspondence*:
M. Camurri
mcamurri@robots.ox.ac.uk

ABSTRACT

In this paper we present a modular and
flexible state estimation framework for legged
robots operating in real world scenarios, where
environmental conditions such as occlusions,
low light, rough terrain and dynamic obstacles
can severely impair estimation performance. At
the core of the proposed estimation system,
called Pronto, is an Extended Kalman Filter
(EKF) which fuses IMU and Leg Odometry
sensing for pose and velocity estimation.
We also show how Pronto can integrate
pose corrections from visual and LIDAR and
odometry to correct pose drift in a loosely
coupled manner. This allows it to have a real-
time proprioceptive estimation thread running
at high frequency (250–1000 Hz) for use in
the control loop while taking advantage of
occasional (and often delayed) low frequency
(1–15 Hz) updates from exteroceptive sources,
such as cameras and LIDARs. To demonstrate
the robustness and versatility of the approach,
we have tested it on a variety of legged
platforms, including two humanoid robots (the
Boston Dynamics Atlas and NASA Valkyrie)
and two dynamic quadruped robots (IIT HyQ
and ANYbotics ANYmal) for more than 2 h of
total runtime and 1.37 km of distance traveled.
The tests were conducted in a number of
different field scenarios which the conditions
described above. The algorithms presented in
this paper are made available to the research
community as open-source ROS packages.

1 INTRODUCTION

Legged robotics is rapidly transitioning from
research laboratories into the real world, as
demonstrated by the recent introduction of several
commercial quadruped platforms.

To be truly useful, legged robots must be able to
reliably and rapidly navigate across rough terrain

Figure 1. The Atlas (A) and Valkyrie (B)
humanoid robots; The HyQ (C) and ANYmal
(D) dynamic quadruped robots. Sources: MIT,
University of Edinburgh, Istituto Italiano di
Tecnologia (IIT), University of Oxford.

and be stable in the presence of disturbances such as
slips or pushes. They must also be able to perceive
and manipulate the environment whilst avoiding
collisions with obstacles and people.

None of these tasks can be accomplished without
the ability to accurately and robustly estimate the
pose and velocity of the robot (i.e., its state) in real-
time using only onboard sensors and computers.
The robot’s state is used to plan and track body
trajectories, to balance and recover from external
disturbances, as well as to map the environment and
navigate trough it.

To achieve a satisfactory level of accuracy,
proprioceptive and exteroceptive sensor fusion is
necessary, exposing the problem of synchronization
and latency between the different signals coming
from each sensor.

1



Camurri et al.

Migrating from the controlled environment of
a laboratory to the real operating conditions
of industrial applications (e.g., oil rig platform
inspection or mine exploration) makes the task
even more challenging, as it requires extra effort to
robustify the estimation algorithm against unknown
situations and long periods of continuous operation
without human intervention.

In this paper, we demonstrate how inertial,
kinematic, stereo vision and LIDAR sensing can
be combined to produce a low-latency and high-
frequency state estimate which can be directly used
to control state-of-the-art humanoids and dynamic
quadrupeds. In turn, this estimate can be used
to build accurate maps of the robot’s immediate
environment and to enable navigational autonomy
and manipulation.

Compared with prior research, this contribution is
the first to provide an open source implementation
of a fully integrated state estimation system
performing sensor fusion of IMU, kinematics,
stereo vision and LIDAR on four different
legged platforms: the NASA Valkyrie and Boston
Dynamics Atlas humanoids; and the IIT HyQ and
ANYbotics ANYmal quadrupeds (Fig. 1). Another
key achievement in comparison with the state-of-
the-art is the demonstration of the algorithm in
closed loop with the controller.

1.1 Contribution

This paper combines previous works focused on
the individual platforms including state estimation
on Atlas in Fallon et al. (2014); an extension to
the HyQ quadruped and incorporation of vision
in Nobili et al. (2017a); and further evaluation of
LIDAR localization in Nobili et al. (2017b).

The paper provides a complete and coherent
overview of the method with a) a comprehensive
and updated survey on state estimation methods for
legged robots; b) additional experimental results on
the ANYmal quadruped platform; c) a more detailed
description of the overall estimation method and
architecture.

Furthermore, we release the Pronto state estimator,
the FOVIS Visual Odometry, and the AICP LIDAR
odometry modules as open-source ROS packages
for the research community.

2 RELATED WORK

The literature on state estimation for legged robots
can be classified according to several criteria: the
type of sensors used (proprioceptive, exteroceptive,
or both); output frequency (at control rate, e.g.

400 Hz, or camera/LIDAR rate, e.g. 10 Hz); state
definition (pose, velocity, joint states, contact
points, etc.); presence of loop closures (odometry vs.
SLAM); the degree of marginalization of past states
(from filtering to full batch optimization). Finally, if
there is fusion of proprioceptive and exteroceptive
signals, this can be performed in a loosely or tightly
coupled manner.

In this section we divide the related work in three
main categories: proprioceptive state estimation,
which includes filtering methods to fuse only the
high frequency signals such as IMU and kinematics;
multi-sensor filtering, which cover filtering methods
with proprioceptive and exteroceptive sensor fusion;
multi-sensor smoothing, which typically involve
fusion of Visual Odometry (VO), IMU and
kinematics in a tightly coupled manner within
probabilistic graphical models frameworks such as
factor graphs.

2.1 Proprioceptive State Estimation

Nearly all modern legged robots are equipped
with IMUs, encoders and force/torque sensors.
Since these devices provide low dimensional
signals at high frequencies (250–1000 Hz), they
are the first to be fused for a smooth (although
drifting) state estimate, useful for control purposes.
Since real-time safety is paramount for controllers,
most methods are based on algorithms such as
the Kalman filter (Section 2.1.1) or lightweight
optimization methods (Section 2.1.2).

2.1.1 Kalman Filtering

Bloesch et al. (2012) were the first to propose
an EKF-based state estimator method that did not
depend on a specific type of gait or number of legs.
The filter used IMU signals (linear acceleration
and angular velocity) as inputs to be integrated for
the process model. The state included pose and
velocity of the robot, as well as IMU biases and feet
contact locations. In this way, they could define leg
odometry measurements from forward kinematics
of the feet in stable contact with the ground. Their
work was implemented on the StarlETH robot and
tested on short indoor experiments. Shortly after,
Rotella et al. (2014) adapted the same method to
humanoid platforms by including the ankle joint
and the feet orientations in the state vector.

An important aspect of humanoid robot state
estimation is the distance between the Center of
Mass (CoM) and the feet, which is larger than
quadruped platforms. In humanoids, the flexibility
of the links is therefore not negligible and can lead
to falls when the CoM is incorrectly estimated
to be inside the relatively small support polygon

This is a provisional file, not the final typeset article 2



Camurri et al.

given by the robot’s footprints. Xinjilefu et al.
(2015) explicitly estimated the CoM offset using
an inverted pendulum model to infer modeling
error and/or unexpected external forces. In contrast,
the approach of Koolen et al. (2016) modeled
the elasticity of their robot’s leg joints to better
distribute error.

The above methods integrated the kinematics as
position constraints. An alternative approach is to
use differential kinematics in addition to forward
kinematics to create linear velocity measurements,
which are then integrated within the filter to
get consistent position estimates. Bloesch et al.
(2013) applied this approach again on the StarlETH
quadruped robot. Since angular velocity from the
IMU appeared on both the inertial process model
and the measurement update, the authors proposed
the Unscented Kalman Filter (UKF) instead of an
EKF to better handle the correlation between the
joint and gyroscope noises.

Fallon et al. (2014) used the same elasticity model
of Koolen et al. (2016) and integrated leg odometry
as velocity measurements on the Atlas robot. Since
the EKF models the measurements as Gaussian,
nonlinearities such as slippages or impacts are
not captured by the filter noise model. Therefore,
special care was taken to ignore invalid contacts by
classifying the output from the contact sensor in the
feet.

When feet sensors are unavailable, the contact feet
are detected by thresholding the Ground Reaction
Forces (GRF), which are estimated from the joint
torques. Camurri et al. (2017) proposed a method
that evaluates GRF discontinuities to discard invalid
leg odometry velocity measurements on the HyQ
quadruped robot. To better detect the feet in contact,
they also proposed a logistic regression method to
learn the optimal GRF threshold on different gaits.
A different approach, based on Hidden Markov
Model (HMM), was adopted by Jenelten et al.
(2019) for slip recovery on the ANYmal robot.
In this case, the probability of contact for each
leg was determined from dynamics and differential
kinematics.

2.1.2 Optimization

Kalman-based filtering have been preferred
over more sophisticated methods because of
its simplicity and low computational expense.
However, recent technological progress have made
optimization-based methods feasible to use. These
methods can overcome some limitations such as the
need to define a process model, even when unfit for
the application. Indeed, the widely adopted EKF
inertial process model approximates the robot to a

ballistic missile, while optimization methods could
incorporate the floating base dynamics equations of
motion instead.

Xinjilefu et al. (2014) formulated the state
estimation of the Atlas robot as a Quadratic
Programming (QP) problem. The cost function
was defined as the weighted sum of two quadratic
terms: the modeling error and the measurement
error, where the former is derived from the floating
base dynamics equation of motion while the latter
is derived from encoders, force/torque sensors and
IMU measurements. The optimization variable was
composed by: the generalized (i.e., joint and base
link) velocities, generalized forces and the modeling
error itself. Note that the base link pose was not
part of the state and was estimated separately with
an EKF. Tests on the Atlas robot have shown
significant improvements in the behavior of the
feedback controller with this estimation method.

A more unified optimization-based solution was
proposed by Bloesch et al. (2018). In their approach,
they eliminated the process model and made each
measurement dependent on both the current and
the previous state of the system. Intuitively, this is
similar to an incremental smoothing method with
a window of size two. The approach was able
to integrate the dynamic equations of motion to
estimate the linear and angular acceleration of the
robot body in addition to what sensed by the IMU,
providing extra redundancy. If a process model is
available, it could still be incorporated as a pseudo
measurement, allowing the form of an EKF to be
retained if required.

2.2 Multisensor Filtering

Chilian et al. (2011) were among the first to
discuss stereo, inertial and kinematic fusion on a
legged robot. They used a six-legged crawling robot
measuring just 35 cm across – yet combining all the
required sensing on board.

Similarly, Ahn et al. (2012) addressed the 3D
pose estimation of the humanoid robot Roboray,
using an EKF-based SLAM technique. Their
motion estimation pipeline contains a visual-
inertial-kinematic odometry module and visual
SLAM module. The kinematic and visual odometry
are used to update the IMU measurements within an
EKF filter. These constitute the input of the visual
SLAM algorithm which performed loop closures
and decrease the drift.

Hornung et al. (2010) applied Monte Carlo
localization (MCL), a Bayes filtering approach
which recursively estimates the posterior, to
estimate the 6 DoF pose of the Nao humanoid robot.

Frontiers 3



Camurri et al.

By fusing the measurements of a 2D LIDAR with
a motion model, they estimated the pose of the
robot’s torso including while climbing a miniature
staircase.

Ma et al. (2016) proposed an error-state Kalman
filter fusing a tactical grade inertial measurement
unit with stereo visual odometry to produce a
pose estimate for navigation tasks, such as path
planning. The robot’s kinematic sensing was only
used when visual odometry failed. Their approach
was focused on pose estimation and was not used
within the robot’s closed loop controller. Their
extensive evaluation (over thousands of meters)
achieved 1 % error per distance travelled.

In contrast to the above mentioned methods, we
aim to estimate both pose and velocity of the robot
with multisensor fusion, and use this estimate online
inside the control loop. This is motivated by the
fact that, for highly dynamic motions, the drift rate
of proprioceptive estimators is unacceptable and
requires integration of other exteroceptive signals.

The estimator used in this work is based on
a loosely-coupled EKF, an approach that has
been previously applied to Micro Aerial Vehicles
(MAVs), e.g., Lynen et al. (2013) Shen et al. (2014).

2.3 Multisensor Smoothing

Smoothing methods are well established in the
MAVs community for tightly coupled visual-
inertial navigation, partly due to the relatively low
complexity of these machines (e.g., fewer degrees
of freedom). The main advantage of smoothing is
the ability to jointly use all (or part) of the past
history of measurements to reduce the uncertainty
around the full robot’s trajectory.

In the recent years, promising works have
been released to apply these techniques to legged
machines. Hartley et al. (2018b) proposed the first
attempt to fuse leg odometry and IMU in a factor
graph on the Cassie bipedal robot. They extended
the state with the feet contact locations and defined
two new factors to incorporate forward kinematics
and impose a zero velocity constraint on the contact
points of a foot. These were then combined with the
preintegrated IMU factor from Forster et al. (2017a).
Hartley et al. (2018a) extended this work to include
additional pose measurements from the SVO Visual
Odometry system (Forster et al. (2017b)). Both
works were demonstrated on Cassie in controlled
environments for a short period of time (<5 min).

Wisth et al. (2019) proposed a tightly coupled
visual-inertial-legged system based on the iSAM2
solver running on the ANYmal robot. The method
extracts Kanade-Lucas features from the stereo

camera on a RealSense D435 camera and optimizes
them as the landmarks in the graph. Leg odometry
was integrated as relative pose factors obtained
from the internal state estimator running on the
robot, Bloesch et al. (2018). The method was
demonstrated on extensive outdoor experiments
in urban and industrial scenarios where dynamic
occludants and textureless areas were present in the
scene.

All the above works were based on the assumption
of a stationary point of contact. This assumption
is violated every time there are slippages or
deformations of the leg and/or the ground. Contact
detection methods can help to reject sporadic
slippage or deformation events. However, when
these occur regularly, they need to be modelled.

Wisth et al. (2019) proposed a factor graph
method that models contact nonlinearities as bias
term of the linear velocity measurements from
leg odometry. This can reduce the inconsistency
between leg and visual odometry and provide a
more robust pose and velocity estimate.

3 PROBLEM STATEMENT

We wish to track the pose and velocity of an
articulated floating base robot with two or more legs
and equipped with an onboard IMU, joint sensing
of position and torque, cameras, and LIDARs. In
this paper, we will focus on the Atlas and Valkyrie
28-DoF humanoids and on the HyQ and ANYmal
12-DoF quadrupeds. The robots of the same type
share the same kinematic tree, with differences only
in the links length and sensor locations.

3.1 Frames and Definitions

3.1.1 Coordinate Frames

In Figure 2 we illustrate the reference frames
relevant to our estimation problem. The inertial
frame W and the base frame B are rigidly attached
to the ground and the robot’s floating base,
respectively. The frames located at the sensor
origins are also rigidly attached to the floating
base, namely: the camera optical frame C, the IMU
frame I, the LIDAR frame L. The relative locations
of these frames are known by design or can be
retrieved with calibration procedures such as the
ones described in Furgale et al. (2013); Reinke et al.
(2019). One or more temporal contact frames K are
created when a foot comes into contact with the
ground.

This is a provisional file, not the final typeset article 4



Camurri et al.

Figure 2. Reference frame conventions for typical
quadruped and humanoid robots (with a simplified
upper torso structure). The world frame W is fixed to
earth, while the base frame B, the camera’s optical
frame C, and the IMU frame, I are rigidly attached
to the robot’s chassis or head. When a foot touches
the ground (e.g., the Right Front, RF), a contact
frame K (perpendicular to the ground) is defined.

3.1.2 Notation

In the remainder of the paper, we adopt the
following conventions: the robot position p =
pW WB ∈ R3 and orientation R = RWB ∈ SO(3)

are from world to base and expressed in world
coordinates; the robot velocities v = vB WB, ω =
ωB WB ∈ R3 are from world to base expressed in base

coordinates; the IMU biases ba
I , bω

I ∈ R3 are
expressed in IMU coordinates. A time dependent
vector quantity a computed at time tk is shortened
as ak = a(tk).

3.2 State Definition

The robot state is defined as the vector combining
position, orientation, linear velocity, and IMU
biases. The angular velocity does not appear as it is
assumed to be directly measured by the IMU once
properly bias compensated. The state at time tk is:

xk = [pk Rk vk ba
k bω

k ]T (1)

The orientation uncertainty is tracked by the
exponential coordinates of the perturbation rotation
vector, as described in Bry et al. (2012).

3.3 Requirements

To effectively track base and feet trajectories, the
state estimate should have negligible drift at least

over the course of one planning cycle. Modern
footstep planners typically replan every 1–5 s. Low
latency velocity estimates (including transduction
and data transmission) are also fundamental for the
feedback loop of a controller.

Low drift or drift-free state estimates are also
required for navigation tasks (such as mapping and
global path planning) as basic building blocks for
many autonomous systems.

With these considerations in mind, we define
the following requirements for a state estimator
designed to run on legged robots in field
operations:

• low pose drift on short range (e.g., 10 m);
• reliability in real semi-structured environments

(i.e., does not diverge);
• signal smoothness for safe use in a control loop.

4 METHOD DESCRIPTION

Our approach adapts the core EKF filter described
in Bry et al. (2012), with velocity corrections added
by Fallon et al. (2014) for humanoid kinematics
and then extended to quadruped kinematics in
Camurri et al. (2017) (see Section 4.2). Additional
pose corrections from visual odometry and LIDAR
registration are described in Sections 4.4 and 4.5.

The goal of the EKF is to estimate the meanµ and
covariance Σ of the Gaussian distribution over the
state, xk, given: the previous state xk−1, the current
control input uk, and the current measurement
zk. The state is first predicted using the nonlinear
discrete transition function f(·) and then corrected
by the observation function h(·). Both functions
are corrupted by zero-mean Gaussian process noise
wk ∼ N (0,Qk) and measurement noise ηk ∼
N (0,Pk):

xk = f(xk−1,uk,wk) (2)

zk = h(xk,ηk) (3)

The mean and covariance are propagated in the
standard manner:

µ−k = f(µk,uk,0) (4)

Σ−k = Ak−1Σk−1A
T
k−1 + Wk−1QWT

k−1 (5)

where the minus superscript indicates that the
quantity is evaluated before the measurement
update takes place. For details on the derivation
of the partial derivatives of the transition function,
A and W, please refer to Bry et al. (2012).

The measurements are also integrated in a
standard EKF manner. For instance, a velocity

Frontiers 5



Camurri et al.

measurement ṽk ∈ R3 with covariance matrix
Pv

k ∈ R3×3 would be integrated as follows:

zk = ṽk (6)

Kk = Σ−k HT(HΣ−k HT + Pv
k)−1 (7)

µk = µ−k + Kk(zk −Hµ−k ) (8)

Σk = (I−KkH)Σ−k (9)

where: Kk ∈ R15×3 is the Kalman gain and H ∈
R3×15 is the Jacobian of the observation function,
which in the specific case above acts as a selector
matrix for the linear velocity substate.

4.1 Inertial Process Model

The acceleration (in the presence of gravity) and
angular velocity are sensed by the IMU at high
frequencies in the range 0.4–1 kHz. These are
affected by bias and zero-mean Gaussian noise:

ω̃I WI = ωI WI + bω + ηω (10)

ãI WI = aI WI + ba + ηa (11)

These quantities are transformed into the base frame
and used as inputs to the process model:

u =

[
ω
a

]
=

[
RIB( ω̃I WI − bω − ηω)
RIB( ãI WI − ba − ηa)

]
(12)

where RIB is the rotational part of the rigid
transform between the IMU and base frames. Note
that we ignore the effects of angular acceleration
and centripetal force (see Diebel (2006)) and
assume the IMU is close enough to the robot’s base
to make them negligible.

The process equations are:

ṗ = Rv (13)

Ṙ = Rω∧ (14)

v̇ = −ω∧v + RTg + a (15)

ḃa = ηab (16)

ḃω = ηωb (17)

where ηωb , η
a
b are bias random walk noises.

Given Equations 13–17, we can predict the mean
of the state xk by simple integration over the period

∆t = tk − tk−1:

uk =

[
ωk
ak

]
=

[
RIB(ω̃k − bω

k−1)
RIB(ãk − ba

k−1)

]
(18)

µ−k = f(µk−1,uk,0) =


pk−1
vk−1

0
ba
k−1

bω
k−1

+


vk−1∆t

(−ω̃∧kvk−1 + (Rk−1)
Tg + ak)∆t

Rk−1 exp(ω∧k∆t)
0
0

 (19)

Note that the attitude is integrated separately using
the exponential map between the Lie group of
rotations and its Lie algebra at the identity (see
Forster et al. (2017a)).

The prior covariance Σ−k is also computed by
Euler integration of the partial derivatives of the
process equation, as detailed in Bry et al. (2015).

Having propagated the filter, measurements from
other sensors can be used to correct the state vector.
In the following sections, we derive measurements
and their covariance matrix from leg, visual and
LIDAR odometry.

4.2 Leg Odometry

Leg odometry estimates the incremental motion of
the floating base of a legged robot from the forward
kinematics of the legs in stable contact with the
ground. This measurement can be formulated as
either a relative pose or a velocity measurement.
In our system, we formulate linear velocity
measurements.

In the following sections, we derive this
measurement specifically for humanoids and
quadrupeds.

4.2.1 Humanoids

We adopt the contact classification and velocity
measurement strategies from Fallon et al. (2014).

4.2.1.1 Contact Classification

Humanoid robots are typically equipped with
force/torque sensors at the feet, from which the
contact state can be inferred by thresholding
the measured normal force. Torsional friction is
assumed to be high enough for there to be no foot
rotation.

This is a provisional file, not the final typeset article 6



Camurri et al.

We use a Schmitt trigger to classify contact
forces sensed by the robot’s 3-axis foot force-torque
sensors and to detect how likely a foot is to be in
contact. For simplicity, only one foot is detected as
in contact during a double support phase and used a
simple state machine to decides which foot is more
reliable.

We also classify other events in the gait cycle,
such as striking contact (as a 20–30 N positive and
increasing discontinuity lasting more than 5 ms)
and breaking contact (negative force discontinuity
below a threshold) Because these events create
unrealistic measurements, the EKF integrates them
with higher measurement covariance.

Finally, we found that in some cases it is necessary
to use the state of the controller to decide which
contact points were in stable contact. For example,
when climbing stairs the toe of the trailing foot
pushes the robot upward but is not in stationary
contact (a “toe off” event). In that case, we use
information from the controller to assign the leading
foot to be the primary fixed foot.

4.2.1.2 Measurements

Once the primary fixed foot is established, a
velocity measurement is created by differentiation
of the base position across the interval ∆t =
tk − tk−1. The foot contact locations at times tk−1
and tk are defined as the composition of the base
position in world coordinates and the foot position
in base coordinates:

pW WK(tk−1) = pk−1 + Rk−1fk(qk−1) (20)

pW WK(tk) = pk + Rkfk(qk) (21)

pW WK(tk) = pW WK(tk−1) (22)

where fk(·) is the forward kinematic function that
returns the foot location in base coordinates and q̃
are the measured joint positions.

Since the contact location in world coordinates
does not change over the interval (see Equation 22),
the difference in position pk−pk−1 can be inferred
from the forward kinematics only, by subtracting
and rearranging Equations 20–21. Finally, the
discrete differentiation is then simply computed by
dividing pk − pk−1 by the time interval (Equation
23).

ṽk =
pk − pk−1

∆t
+ ηv =

=
Rk−1fk(q̃k−1)−Rkfk(q̃k)

∆t
+ ηv (23)

zk = ṽk (24)

where the covariance matrix Pv
k = Pv is defined

from fixed values (empirically found) which are
increased when special events (striking contact,
breaking contact) occur.

4.2.2 Quadrupeds

Quadruped robots are typically equipped with
high precision joint encoders from which low
noise joint velocity measurements can be derived.
However, a major challenge is achieving accurate
contact estimation since field-ready quadruped are
not typically equipped with direct contact sensors
as they easily break during operation.

4.2.2.1 Contact Classification

Quadruped robot feet are usually approximated
to be point-like and then assumed to exert
only pure forces onto the ground. These forces
can be estimated for each individual leg ` ∈
{LF, RF, LH, RH} using the base acceleration ω̇, v̇
and torques τ :

f ` = −
(

J(q)T
)†(

τ − hq − FT

[
ω̇
v̇

])
(25)

where: J(·) is the foot Jacobian, hq are the Coriolis
effects, and F is the matrix of spatial forces required
at the floating base to support unit accelerations
about each joint variable (see Featherstone (2008)).

Let f `k ∈ R be the vertical component of f ` ∈ R3

at time tk. Thus, we model the probability for a
particular foot to be in firm, static and stable contact
with the following Sigmoid function:

P`
k(s`k = 1|f `k) =

1

1 + exp (−β1f `k − β0)
(26)

where s`k ∈ B is a binary value that indicates
contact/no-contact for foot ` at time tk. We learn
the Sigmoid parameters β0 and β1 using a logistic
classifier, as described in Camurri et al. (2017).

For each leg, we determine a (binary) contact state
s`k = 1 if P`

k > 0.5 and s`k = 0 otherwise.

4.2.2.2 Measurements

Having determined the set of legs in contact, for
a given leg ` the robot’s linear velocity can be
computed as follows:

vB WB = − vB BK − ωB WB × pB BK (27)

From the sensed joint positions and velocities q̃, ˜̇q
and their additive noises ηq,ηq̇, we can rewrite

Frontiers 7



Camurri et al.

Eq. (27) as a linear velocity measurement of the
robot’s base, computed using the leg `:

ṽ` = −J(q̃−ηq) ·(˜̇q−ηq̇)−ω× fk(q̃−ηq) (28)

where fk(·) and J(·) are the forward kinematics
function and its Jacobian, respectively.

As in Bloesch et al. (2013), we collect all the
effects of noise into one additive term ηv:

ṽ`
k = −J(q̃k)˜̇qk − ω × fk(q̃k) + ηv (29)

Since multiple legs can be in contact simultaneously,
we define the velocity measurement as a weighted
average using the set of legs in contact, where
weights are using the contact probabilities P`

k from
Equation 26:

ṽk =

∑
P`
kṽ

`
k∑

P`
k

+ ηv ∀` | s` 6= 0 (30)

z = ṽk (31)

The adaptive covariance Pv
k is associated with

the velocity measurement and accounts for harsh
impact forces (up to 600 N for a 90 kg robot
trotting). These forces can severly undermine the
estimation performance, because compression of
the legs or the ground causes wrong kinematic
measurements which translate into velocity and
position errors.

The covariance is computed as the combination
of a fix term (from encoder noise datasheet), the
inter-leg velocity covariance Dk and a term that is
proportional to force discontinuities (that are caused
by impacts). For convenience, let ck be the total
number of detected contact legs at time tk. The inter-
leg covariance is defined as the covariance matrix
of the velocity contributions from the contact legs:

Dk =
1

ck

∑
(ṽk − ṽ`

k)(ṽk − ṽ`
k)T

'

σ2x 0 0
0 σ2y 0
0 0 σ2z

 = Λ(σ2x, σ
2
y , σ

2
z) (32)

The force discontinuity is defined as the average
normal force absolute difference per each leg:

∆f =
1

ck

∑
∀`
|f `k − f `k−1| (33)

From Equations 32–33, the final covariance for the
velocity measurement is:

Pv
k = Pv

0 +

[
1

2

(
Λ(σx, σy, σz) + I3

∆f

α

)]2
(34)

Figure 3. Visual odometry performance during
a trotting sequence on HyQ: the robot first trots
forward at 0.3 m/s and then turns in place sharply
over a 5 s period. During the initial trotting phase,
VO performance is satisfactory. However, image
blur causes the number of inliers to fall and mean
re-projection error to spike. During this part of the
experiment, no VO measurements are incorporated
into the main motion estimate.

where α is a constant normalization factor,
empirically determined.

4.3 Zero Velocity Bias Estimation

The yaw drift due to bias evolution can be
significant over long periods of time. Yaw error
is also the dominant source of drift in any state
estimator or SLAM system. For this reason, in Ma
et al. (2016) zero velocity updates were used to
measure rotation rate bias estimates.

In our system, we continually check for periods
where the robot is stationary using the joint
velocities and GRF.

When the robot is stationary for at least 400 ms,
the gyro bias is updated to the average angular
velocity recorded during the stationary period:

b̃ω
k =

1

tk − ti

k∑
j=i

ω̃j (35)

zk = b̃ω
k (36)

where tk − ti > 400 ms.
Since the bias is generally a very small quantity

(i.e., ω � bω), the covariance associated to the
measurement can be typically set to very small
values without affecting the control system of the
robot.

This is a provisional file, not the final typeset article 8



Camurri et al.

4.4 Visual Odometry

Visual Odometry estimates the pose of the robot
by tracking features on camera images. The VO
estimate frequency is typically in the range of 10–
30 Hz, which corresponds to the camera frame rate.

When used in combination with LIDAR odometry,
the benefit of VO is twofold. First, it makes the
overall estimated trajectory smoother if compared
with a inertial-kinematic-LIDAR only system,
as it reduces the drift rate in between two
LIDAR updates. Second, the reduced drift rate
also helps the LIDAR registration itself, as
the sparsity of the LIDAR scans requires the
accumulation of scans over time before performing
the registration. Therefore, a smaller drift rate
during the accumulation produces higher quality
point clouds to be registered.

Our visual odometry pipeline is based on the
FOVIS algorithm by Huang et al. (2011). The
measurements are loosely integrated into the filter
as relative pose measurements between frames. This
would allow the use of other VO algorithms, such
as ORB-SLAM (Mur-Artal et al. (2015)), SVO
(Forster et al. (2017b)) or VINS-Mono (Qin et al.
(2018)), to name a few. FOVIS was chosen because
of its computational efficiency.

The only input to FOVIS is a sequence of stereo
image pairs. It tracks FAST features in a key-frame
approach to estimate incremental camera motion.
Given two keyframes at times ti, tj , we denote the
estimated relative motion of the camera between
these two times as T̃Ci CiCj

= T̃Cij . Using the
known camera-to-base frame transformation, TB BC,
this can be expressed at the corresponding estimate
of the motion of the base frame as:

T̃Bij = TB BC T̃Cij ( TB BC)
−1 (37)

We integrate the VO estimate for a time window
tj − ti which is typically 2–3 s. When used in
combination with the LIDAR module, we then
form a position measurement in the world frame, as
follows:

T̃W WB(tj) = TW WB(i) T̃Bij (38)

p̃j = trans
(

T̃W WB(tj)
)

(39)

zj = p̃j (40)

where the pose of the robot at time ti is taken from
filter’s history of states. Note that we choose to
use only the translational part of Equation 38 for
the EKF filter update, as yaw corrections from the
LIDAR are more accurate and sufficiently frequent.

Without the LIDAR module, the VO update can
also include rotational components (typically only
yaw, since roll and pitch are observable from the
IMU).

Note that the update could be delayed in time (i.e.,
tj < tk), therefore the filter will re-apply the chain
of measurements from time tj to tk, as explained in
Section 5.1.

The covariance matrix for the measurement was
manually set to fixed values. However, when the
FOVIS algorithm reports failure, the measurement
is discarded. The algorithm reports failure in three
cases: 1) when the number of inlier features being
tracked is below a threshold (10 in our case); 2)
when the solution of the optimization is degenerate;
3) when the reprojection error is higher than a
threshold (1.5 pixels in our case).

An example of failure is provided by Figure 3,
where at time 12 s the number of inliers drops
below the threshold (top plot) and the reprojection
error increases significantly (medium plot) due to
an abrupt robot rotation which caused motion blur
(bottom plot).

4.5 LIDAR Odometry

Our LIDAR odometry is based on the Auto-
tuned Iterative Closest Point (AICP) algorithm by
Nobili et al. (2017b), which improves the ICP
implementation from Pomerleau et al. (2013) by
making it more robust against significant changes
in overlap between the clouds to be registered.

The rotating Hokuyo LIDAR sensor inside the
Multisense SL (mounted on Atlas, Valkyrie and
HyQ), as well as the Velodyne VLP-16 (mounted on
ANYmal) produce very sparse point clouds which
cannot be used directly for scan to scan registration.

Therefore, we accumulate consecutive measurements
from the sensor as a reference point cloud. The
filter’s state is used as the source of robot poses
during the accumulation. We assume that the pose
drift during the accumulation is small enough not to
create significantly distorted reference point clouds.
In this context, the VO module is important, as it
keeps the drift bounded during the accumulation
period.

Once a sufficiently dense reference cloud is
obtained, a sequence of reading point clouds are
accumulated and registered against the reference
for motion estimation. The result of the registration
constitutes an additional relative pose measurement
for the EKF.

Frontiers 9



Camurri et al.

4.5.1 Reference Update

Using the first accumulated point cloud as the
reference and registering the forthcoming clouds as
reading is effective only in confined scenes. When
the robot travels far away from its initial location,
this method is intractable due to the decreasing
overlap between the source and the reading clouds,
eventually resulting in ICP failure.

To guarantee the sufficient overlap between the
reference and the reading clouds, we update the
reference clouds whenever the overlap drops below
a safety threshold. In long range missions, such as
the one described in Section 7.5, we conveniently
forced a reference update after the robot has traveled
5 m from its initial location. This way, the drift is
effectively bounded while having sufficient overlap
for data association.

4.5.2 Pre-filtering

According to Segal et al. (2009), point-to-
plane registration has proven to have superior
performance than point-to-point. Therefore, we
extract planar macro-features (e.g., walls, doors,
ceilings) and implicitly discard all other entities
(including dynamic obstacles). We also apply a
voxel filter with a leaf size of 8 cm to uniformly
downsample the clouds. This step is necessary to
equalize the contribution from all the points during
the optimization process, as point clouds are denser
in the proximity of the sensor.

For planar surface extraction, we adopt a region
growing strategy: a patch which is larger than a
specific area (e.g., 30 cm× 30 cm) is accepted for
further process. An example of pre-filtering output
is shown in Figures 4A and 4B.

4.5.3 Auto-tuned ICP

Most ICP solutions assume a constant overlap
between reference and reading clouds. However,
when partial occlusion occurs (e.g., during passage
through a narrow door), this assumption is violated
and the massive concentration of points on the
occludant (e.g., the walls besides the door) can
cause wrong correspondences.

In contrast, we continuously estimate the
amount of overlap between the point clouds and
automatically tune the ICP inlier ratio for robust
registration. The overlap parameter is proportional
to the true positive correspondences (i.e., the higher
is Ω, the larger the number of true positive matches
and vice versa). In the following subsection, we
briefly describe how Ω is computed. More details
can be found in Nobili et al. (2017b).

Figure 4. Pre-filtering and Outlier filtering. (A)
raw point cloud from Valkyrie’s dataset, people are
outlined in red. (B) after pre-filtering. People and
small irrelevant features have been filtered-out. (C)
region of overlap as the result of the analysis of the
two volumes of the point clouds.

4.5.4 Overlap Filter

The overlap parameter Ω is computed in a point-
wise fashion (Figure 4C). Let AW , BW be the
reference and reading point clouds acquired at times
ti, tj and whose points have been expressed in world
coordinates by using a prior from the EKF. Each
cloud is confined into the volumes Vi, Vj by the
sensor Field-of-View (FoV). The intersection of
the two volumes defines an overlap region (red in
figure). If Si and Sj are the points of Ai and Bj
belonging to the overlap region, we can define the
overlap parameter Ω as:

Ω =
|Si|
|A|
·
|Sj |
|B|

(41)

where | · | indicates the number of points in the
cloud.

This is a provisional file, not the final typeset article 10



Camurri et al.

We use the overlap parameter from Eq. (41) to
dynamically set the inlier ratio of the ICP algorithm.
If 0.2 < Ω < 0.7 we set the inlier ratio to Ω. If Ω
is below 0.2, the inlier ratio is set to 0.2, as it is the
minimum required for ICP registration. Finally, if
Ω exceeds 0.7, the inlier ratio is bounded to 0.7 to
avoid overestimation.

We follow three heuristics to determine if an
alignment is successful. First, the mean residual
point-wise error should be smaller than the
threshold α:

MSE =
1

n

n∑
i=1

ri < α (42)

where r1, . . . , rn are the residual distances between
the accepted matching points in the input clouds.
Second, the median of the residual distribution,
Q(50), should be smaller than the threshold α:

Q(50) < α (43)

Third, the quantile corresponding to the overlap
measure should be also smaller than α:

Q(Ω) < α (44)

The first two conditions are commonly used metrics
of robustness, while the third automatically adapts
to the degree of point cloud overlap. The parameter
α was set to 0.01 m during our experiments.

4.5.5 Measurements

Once the two clouds A,B have been successfully
registered, the estimate T̃Bij of the robot’s base
relative pose between time ti and tj is available,
similarly to Equation 37. Thus, the measurement
is incorporated in the same way, but including
rotation:

T̃W WB(tj) = TW WB(i) T̃Bij (45)

p̃j = trans
(

T̃W WB(tj)
)

(46)

R̃j = ∠
(

T̃W WB(tj)
)

(47)

zj =
[
p̃j R̃j

]
(48)

where again the absolute pose of the robot at time
ti is taken from the filter and the covariance matrix
is set to fixed values. Note the time index is j as
typically the measure is delayed (i.e., tj < tk).

5 IMPLEMENTATION

A block diagram of our system is presented in
Figure 5. Even though the Pronto modules can all

Figure 5. Block diagram of our system: the IMU
process model and leg odometry run on the control
computer in a real time process (in pink) on the
control computer, while the other modules run on
separate computers in the user space (light blue).
These modules output filter measurements as ROS
messages which are exchanged with the real-time
domain through native shared memory mechanisms.

be run on a single machine, it is common practice
in legged robot design to distribute the computation
across two separate computers: a Control PC
connected to actuators and proprioceptive sensors
running a real-time operating system; and a Vision
PC for exteroceptive sensor processing. This design
architecture has been adopted for all the robots
evaluated in this paper. Its main advantage is that the
more critical operations are unaffected by potential
delays, failure or overloads caused by the resource
intensive data processing from camera and LIDAR.

Therefore, the IMU prediction and leg odometry
updates are performed within the same UNIX
process running on the Control PC. After every
IMU process step, the estimator immediately shares
the filter state with the control system via a real
time interface based on shared memory. The same
estimate is also available on the network for other
modules to use (e.g., as prior for ICP).

The FOVIS and AICP processes are run on
the Vision PC. Both modules are decoupled from
the core estimator, which receives the updates
as timestamped messages via a TCP or UDP
channel (e.g., ROS messages). This allows Pronto
to perform the core IMU/leg odometry, which is
more critical, and to incorporate measurements if
and when they are available.

On all platforms, the computation is carried out on
consumer grade processors (e.g., equivalent to Intel
i7 for laptop), with no need for GPU processing.

Frontiers 11



Camurri et al.

Figure 6. Example illustrating how VO and LIDAR measurements can be incorporated into the filter
despite having much higher latency than the IMU process model. In black is the best estimate of the
trajectory at that instance, in red are updates introduced by incorporated measurements and dashed gray
lines are parts of the trajectory which are recomputed. For clarity, the magnitude of the corrections is
exaggerated. Elapsed time is indicated in the upward direction.

5.1 Measurement History

The implementation of the filter maintains a
history of measurements (with their covariance),
filter prior/posterior states, and filter covariances
covering a time window of typically 10 s. This
allows incorporation of asynchronous corrections
from VO and LIDAR which have significant
latency.

In Figure 6, we explain the concept with a toy
example. In black is the best estimate of the current
state and history at that moment in time. In red are
discontinuities caused by EKF updates (exaggerated
for clarity). In dashed gray are portions of the filter
history which are overwritten due to a received
measurement.

Event 1: At time ta, the head of the filter points
to Ta. This state is the result of predictions and
measurement integrations available up to time ta. At
this same time, the filter receives a delayed LIDAR
measurement with timestamp tc (with tc < ta). In
particular, the measurement involves the relative
pose between Tb and Tc (with tb < tc). The history
consists of a window of measurements, filter states,
and filter covariances, ordered by timestamp. Since
the window is longer than the time interval ta − tb,
the filter head can be moved back to Tc, which
corresponds to the state recorded at time tc.

Event 2: The LIDAR measurement is incorporated
as an EKF correction resulting in the posterior
estimate T̂c. At this point, all the measurements in
the history with timestamps after tc are re-applied
to the filter, as if they had been received after
the LIDAR measurement. As a result, the filter
head at time ta becomes T̂a. The past trajectory

(dashed gray line) is therefore overwritten. The new
current state T̂a is the same as it would have been
if the LIDAR measurement was received at time tc
instead of ta.

Event 3: Over the next period of time, the filter
continues to propagate the head of the estimator
using the IMU process model and leg odometry.
At time td, a new visual odometry measurement is
created which measures the relative transformation
of the body frame between time te and time tf . This
measurement is typically received with 150–300 ms
of delay.

Event 4: We wish to use this information to
correct the pose of the robot towards T̂f , as
described in Section 4.4. The key step is that this
correction to the filter is carried out using the re-
filtered trajectory (mentioned in Event 2). After the
correction is applied, the head of the filter becomes
T̂d and the estimator continues as normal.

The final sub-figure (on the right) shows the state
of the head of the filter over the course of the
example. This is the running estimate that would
have been available to the controller online.

Note that the proposed framework qualifies as
an odometry system, as no loop closures are
performed. Therefore, typical corrections from
the exteroceptive modules are in the order of
few centimeters (cf. Figure 9C top right). These
discontinuities are small enough to be dealt with
by the position controller acting on the robot base
with appropriate gains. Bigger discontinuities, such
as the ones from a SLAM system, are typically
addressed by using two different reference frames

This is a provisional file, not the final typeset article 12



Camurri et al.

for control and for global path planning (e.g., Wim
Meeussen (2010)).

5.2 Software Structure

The framework presented in this paper is available
to the research community as three open-source
repositories:

• pronto1: library implementations of the EKF
inertial process model and the Leg Odometry
modules described in Sections 4.1 and 4.2,
respectively

• fovis ros2: ROS wrapper for the FOVIS
algorithm (previously open-source but not ROS
compatible)

• aicp mapping3: implementation of the
AICP algorithm described in Section 4.5.

The first repository is independent from the others
and contains all the code necessary to implement a
proprioceptive state estimator on a legged robot. To
deploy the algorithm on a legged robot of choice,
either with or without ROS, the implementation
of the forward kinematics API and the creation
of a dedicated executable is required. A complete
example of a deployment on the ANYmal robot is
also provided.

6 EXPERIMENTAL PLATFORMS

In the following sections, we describe the relevant
characteristics of the experimental platforms used:
the Atlas and Valkyrie humanoid robots and the
HyQ and ANYmal dynamic quadruped robots. A
summary of the main sensors mounted on the robots
is provided by Table 1.

6.1 Atlas

Atlas (version 5, Figure 1A) is a 195 cm high,
95 kg heavy, 28-DoF hydraulic robot manufactured
by Boston Dynamics for the DARPA Robotics
Challenge. Each leg has six joints (three hip,
one knee, and two ankle joints), the position
of which are estimated from the measured
travel of their hydraulic actuators using a Linear
Variable Differential Transformer (LVDT). Since
the accuracy of these devices is limited, the joint
velocities are very noisy and therefore not used
directly for leg odometry (cf. Section 4.2.1). Other
measurement nonlinearities such as backlash have

1 github.com/ori-drs/pronto
2 github.com/ori-drs/fovis_ros
3 github.com/ori-drs/aicp_mapping

been addressed the same way as Koolen et al.
(2016).

Located at the pelvis is a tactical KVH 1750 IMU
equipped with Fiber Optic Gyro (FOG) for accurate
angular velocity measurements.

The main source of exteroceptive signals is the
Carnegie Robotics Multisense SL, a tri-modal
ruggedized sensor that includes: a rotating Hokuyo
UTM-30LX-EW; a high quality rolling shutter
RGB stereo camera with a 7 cm baseline; and a
FPGA implementation of the stereo Semi-Global
Matching algorithm by Hirschmüller (2008), to
provide dense 3D point clouds at nominal camera
frequency. All these signals are synchronized in
hardware through the FPGA. The laser produces 40
line scans per second with 30 m maximum range —
while spinning about the forward-facing axis. Every
few seconds, it spins half a revolution and a full
3D point cloud is accumulated with a Field-of-View
(FoV) of 220◦ × 180◦.

6.2 Valkyrie

Valkyrie (Figure 1B) is a 1.87 m tall, 129 kg,
and 44-DoF (28-DoF without hands) electrically
actuated robot developed by NASA for the DARPA
Robotics Challenge and space operations (Radford
et al. (2015)). As for Atlas, each leg has 6-DoF,
with 3-DoF hips, 1-DoF knee and 2-DoF ankles.
The hip and knee motors are rotary actuators whose
rotation is measured by magnetic encoders and
torque by a measuring the spring deflection. The
ankle joints are linear with encoders located at the
rotation for position and load cells on the shaft for
torque measurement, respectively.

Even though the robot is equipped with several
cameras for visual servoing, the main exteroceptive
sensor considered in this paper is again the
Multisense SL. The FoV of the LIDAR is reduced
to 180◦ × 120◦ by a plastic cover over the head.

6.3 HyQ

HyQ (Figure 1C) is a torque-controlled Hydraulic
Quadruped robot (Figure 1) developed by Semini
et al. (2011) at the Istituto Italiano di Tecnologia
(IIT). The system is 1 m long, and weighs
approximately 85 kg. Its 12 revolute joints have
a rotational range of 120◦ and a maximum torque
of 160 N m. The 1 kHz sensors are read by a control
computer (using a real-time operating system).
All other sensors are connected to a perception
computer and are passively synchronized with the
real-time sensors as described in Olson (2010).

As for Atlas and Valkyrie, the robot’s main
exteroceptive sensor is the Carnegie Robotics

Frontiers 13



Camurri et al.

Sensor Model Hz Specs
ATLAS

IMU KVH 1750 333 Init Bias: 0.5 ◦/h | 0.5 mg
Bias Stab: 0.05 ◦/h | 0.05 mg

Stereo
Camera Multisense SL 10

Res: 1024× 1024 px
FoV: 80◦ × 80◦
Imager: CMV4000 4MP

LIDAR Hokuyo UTM-30LX-EW 40 FoV (full rot.): 220◦ × 180◦

Encoder N/A 333 Res: <0.0045◦

Torque N/A 333 Res: N/A
VALKYRIE

IMU 3DM-GX4-25 500 Init Bias: 0.05 ◦/s | 2 mg
Bias Stab: 10 ◦/h | 0.04 mg

Stereo
Camera Multisense SL 10 FoV (full rot.): 180◦ × 120◦

Encoder N/A 500 Res: 0.0043◦

F/T ATI Omega85 500 Res: 0.07–0.1 N
0.02–0.03 N m

HYQ

IMU KVH 1775 1000 Init Bias: 0.5 ◦/h | 0.5 mg
Bias Stab: 0.05 ◦/h | 0.05 mg

Stereo
Camera Multisense SL 10 See above

Encoder AEDA3300-BE1 1000 Res: <0.0045◦

Force Burster 8417 1000 Res: <25 N
Torque N/A 1000 Res: N/A

ANYMAL

IMU Xsens MTi-100 400 Init Bias: 0.2 ◦/s | 5 mg
Bias Stab: 10 ◦/h | 15 mg

Stereo
Camera RealSense D435 30

Res: 848× 480 px
FoV: 91.2◦ × 65.5◦
Imager: IR global shutter

Encoder ANYdrive 400 Res: <0.025◦

Torque ANYdrive 400 Res: <0.1 N m

Table 1. Sensor specifications divided by robot.

Multisense SL. The stereo camera was configured
to capture 1024× 1024 images at 10 Hz. Figure 10
shows an example of a left camera image and
a depth image taken during an experiment —
indicating the challenging scenarios we target.

6.4 ANYmal

ANYmal (version B, Figure 1D) is a 12-DoF
electrically actuated quadruped robot initially
designed by Hutter et al. (2016) at ETH Zurich
and now manufactured by ANYbotics. It is
80 cm long and weights 33 kg. Its series elastic
actuators can deliver up to 40 N m of torque and
provide accurate measurements of the joint position,
velocity (internally computed by differentiation)
and torque (by spring deflection measurement).

The robot is equipped with a XSens MTi-100
industrial grade IMU, a RealSense D435 camera
at the front (for visual stereo odometry and local
mapping) and a Velodyne VLP-16 LIDAR on the
top (for localization and global mapping).

7 EXPERIMENTAL RESULTS

We carried out a series of experiments with the
Atlas, Valkyrie, HyQ and ANYmal robots over the
course of four years. We present summary results
which have a combined time of 2 h and 13 min
and 1.37 km of distance traveled, respectively. A
summary of the experimental results divided by
dataset and robot is available in Table 2.

7.1 Evaluation Protocol

We aim to evaluate the estimation performance
both quantitatively and qualitatively, with a focus on
real-world scenarios and online/real-time execution.

7.1.1 Ground Truth

The experimental results presented in this section
have been collected over the span of several years
in a variety of different conditions and platforms.
For this reason, it was not always possible to
generate the ground truth poses from the same
source (e.g., motion capture). The last column of
Table 2 indicates the experiments where ground
truth was available.

For all indoor experiments on HyQ and Valkyrie
(lines 2–4, Table 2), we have used a Vicon motion
capture system to have millimeter accurate ground
truth poses at 100 Hz.

For the HyQ outdoor experiments (line 6 in
table), we exploited situations where the robot
was completely stationary to accumulate six full
sweeps of LIDAR scans from different locations
to reconstruct the scene in post-processing via
ICP registration. Since the LIDAR was perfectly
stationary, the accumulation was performed for
at least two full turns (65k points per scan), and
the overlap was more than 70 %, we ascribe the
accuracy of the reconstruction to the one of the
sensor, which is 3 cm for the experimental area
evaluated. Then, we have generated a ground truth
trajectory by aligning the point cloud data from
the onboard LIDAR with the prior map in post-
processing. Note that this trajectory is different than
the one obtained during online estimation, as there
was no prior map involved in this process.

The experiment with ANYmal (line 7, Table 2)
have been paired with ground truth from a Leica
TS16 laser tracking system, which tracked the
robot’s position with millimeter accuracy using a
reflective prism on the robot. The data from the laser
tracker was then spatio-temporally aligned with the
IMU to get ground truth poses via an offline batch
optimization, as described in Burri et al. (2016).

This is a provisional file, not the final typeset article 14



Camurri et al.

Exp. N Robot RPE VO AICP OL CL T DT A GT
[m] [s] [m] [m2]

1 Atlas ≤ 0.03* - X X X 1236 16 154 -
2 Valkyrie 0.016 - X X X 341 12 78 X

3 Valkyrie 0.016 - X X X 50 2.5 78 X

4 HyQ 0.027 X X X X 1740 400 7.5 X

5 HyQ ≤ 0.03** X X X X 1740 400 9 -
6 HyQ 0.033 X X X X 2640 300 100 X

7 ANYmal 0.34 X X - - 1996 240 1381 X0.83 - - - -

Table 2. Summary of the experiments. Legend: Exp. N = Experiment number, RPE = Relative Pose Error
(translational part, evaluated over 10 m distance, ATE = Absolute Translation Error, VO = Visual Odometry,
OL = Online, CL = Control Loop, T = Time, DT = Distance Traveled, A = Area, GT = Ground Truth. *
By evaluation of the ground truth point cloud. ** By evaluation of the accuracy in returning to the initial
position.

Finally, when ground truth was not available,
we have designed the experiments such that the
estimation performance could be measured by
analyzing the robot’s accuracy in returning to
its initial position after several forward/backward
motions.

7.1.2 Pose Estimation Performance

Since our proposed algorithm is an odometry
system (i.e., no loop closures are preformed),
we base our quantitative analysis on the mean
translational component of the Relative Pose Error
(RPE), defined by Sturm et al. (2012), over
a distance of 10 m. The performance for each
experiment is indicated in Table 2.

7.1.3 Control Loop Performance

We have evaluated the stability of the algorithm in
real conditions by running the estimator in real-time
on Valkyrie (to feed footstep planner). On Atlas
and HyQ, we also closed the control loop with the
estimator. The control loop test implicitly evaluates
the quality of the velocity estimates, which are
directly used by the locomotion controllers. For
the ANYmal the execution was tested offline, but
at nominal speed and on consumer grade laptop
with comparable performance to the hardware
mounted on the robot. In this case, the suitability for
control loop was assessed by looking at the signal
smoothness.

7.2 Atlas Experiments

The Atlas dataset (Table 2, Experiment 1) was
collected during a run by the MIT team at the

Figure 7. AICP performance on the DRC Finals
dataset with Atlas. Top: a top view of the alignment
of 206 point clouds during the run — left: raw
clouds with people, right: filtered clouds. Bottom
left: state estimation without applying correction,
valve perceived in different locations by successive
clouds. Bottom right: with successful localization,
consistent estimate of the affordance.

DARPA Robotics Challenge Finals (Pomona, CA
2015). It consists of 20 min 36 s of continuous
operation in a semi-structured environment of
14 m× 11 m, with walls on the right side of the
robot and an open-space populated by a crowd on
the left. The robot walks through the test scenario
along a 16 m path while passing over uneven terrain
and manipulating objects (Figure 1A). Accurate
maps of the environment were obtained in post-
processing.

During the whole competion, Pronto (without
AICP) was used to close the control loop. Its

Frontiers 15



Camurri et al.

low-drift estimation performance (evaluated to
be approximately 1.67 % travelled distance in
preliminary indoor tests) allowed to successfully
traverse uneven and rough terrain, altough pauses
for re-localization were necessary.

Later on, further offline tests were carried out
after the integration of the AICP module. This time,
the system performance was qualitatively evaluated
from careful observation of the map after the run
(Figure 7), where the estimated trajectory is close to
error free (approximately 3 cm error for the full run).
People have been filtered-out and do not contribute
to the alignment (top right). The algorithm is
stable and robust enough to compute successful
alignments during the entire run (with more than
14 m displacement and overlap decreasing to just
10 %), satisfying requirement 2. Under the same
conditions, standard ICP algorithms fails after 400 s
as they are not accounting for dynamically changing
point cloud overlap across the run.

7.3 Valkyrie Experiments

The state estimation framework was tested online
on two different tasks: repeated walking on flat
ground (Table 2, Experiment 2) and stair climbing
(Table 2, Experiment 3).

7.3.1 Repeated Walk to a Target

Valkyrie walked repeatedly forward towards a
fixed target identified at the beginning of the
run before reversing direction. Over the course
of the experiment, the error in translation never
exceeds 7.5 cm and is 1.6 cm on average, whereas
the estimator without LIDAR has an unbounded
drift (Figure 8), mostly dominated by yaw bias
(see bottom plot). This satisfies the requirements
about expected localization accuracy. Thanks to
this localization performance, the robot could
reach the goal target and maintain a precise pose
estimate during the entire run. In contrast, using
the proprioceptive state estimator the robot failed to
reach the target due to odometry drift.

7.3.2 Stair Ascend

Valkyrie was placed at 1 m from a staircase. The
task was to walk towards it and climb up the steps.
Planning was performed only once, at start. Over
the course of this 50 s experiment, the median
errors in translation and rotation were comparable
to Experiment 2. This level of accuracy allowed the
robot to safely perform the task without needing
to re-plan. In contrast, during the DRC robots
typically took a few steps at a time to climb stairs
or transverse uneven terrain, pausing periodically to
manually re-localize and re-plan. In this context,

Figure 8. Translational and rotational error for
Experiment 2 (Valkyrie). The blue line shows the
kinematic-inertial typical estimation drift while in
red is the estimate with the AICP corrections.

our system was demonstrated to enable greater
autonomy in task execution.

7.4 HyQ Experiments

On HyQ we performed experiments in two
different scenarios. First, for Experiment 4, a
repetitive trotting motion was carried out in
a laboratory environment with a Vicon motion
capture system for ground truth. Second, for
Experiment 5 and 6, extensive testing was carried
out in a poorly lit, industrial area with a feature-
less concrete floor, as well as test ramps and
rock beds (Figure 9B). The environment, the
different locomotion gaits (trotting and crawling)
and the uneven terrains presented a large number of
challenges to our algorithms and demonstrated the
importance of using redundant and heterogeneous
sensing. The robot’s peak velocity when trotting
was about 0.5 m/s, which is approximately half of
typical human walking speed.

7.4.1 Indoor Repeated Trot to a Target

The robot was commanded to continuously trot
forward and backward to reach a fixed target (a
particular line in Figure 9A). Robot position and
velocity estimates were used by the controller to
stabilize the robot motion while tracking the desired
position, as described in Barasuol et al. (2013).

Periodically, the operator updated the target so
as to command the robot to trot a further 10 cm
forward. The experiment continued for a total
duration of 29 min. At the end of the run, the robot
had covered a total distance of about 400 m and
trotted forward and backward 174 times.

In Table 2, we show that the drift is below
3 cm when combining IMU, Legged, Visual and

This is a provisional file, not the final typeset article 16



Camurri et al.

LIDAR odometry. By comparison, without any
exteroceptive signals the drift was more than three
times higher. When testing independently the
addition of VO or LO, we noticed that incorporating
VO reduces the drift rate relative to the base line
system, while adding AICP achieves drift-free
localization, since the AICP re-localizes against
the same fixed map (the room).

To test the performance with uneven terrain and
where the reference point cloud has to be updated
due to longer paths, a second series of experiments
was carried out in a larger environment.

7.4.2 Outdoor Repeated Trot to a Target

An equivalent experiment has been performed
within a section of a a 20 m× 5 m industrial area
surrounded by pallets, walls and air treatment
machines. The robot repeated a forward-backward
motion covering a 6 m× 1.5 m area towards a target
placed at 5 m distance from its starting position
(Figure 1C). The robot traveled about 400 m on a
0.5 m/s trotting gate, reaching the target 40 times
without any user input at run time.

The results presented in this section show that the
fully integrated state estimation system, leveraging
IMU, leg odometry, VO and AICP data, produce a
very low drift estimate of the robot state. However,
no LIDAR reference cloud updates were triggered
as the robot did not travel far from its initial
location.

In the case of larger explorations, every reference
update generates an accumulated error. The
magnitude of this error depends on the residual
error from the alignment of the new reference to
the previous. In the case of HyQ, a reference update
happens once every 10–13 m distance covered,
depending on occlusions. In the following section,
we present statistics from experiments where
multiple LIDAR reference cloud updates were
made.

7.4.3 Outdoor Industrial Area Exploration

The robot explored the same industrial area
described in the previous section. To test the system
in different conditions, in some experiments we
have added rough terrains and ramps (Figure 9B)
with both crawling and trotting gaits at up to 0.5 m/s.
Turning in place (as seen in Figure 3) represented
an extra challenge for the state estimation system.
Lighting conditions varied dramatically during data
recording, from bright light to strong shadows and
from day to night-time. In some experiments, on-
board lighting was used. The dataset is summarized
in Table 3 and consists of five runs, for a total
duration of 44 min and 300 m traveled.

N Gait Duration Area m2 Laser Ramp
6a crawl 869 s 20×5, F/B 5 RPM X

6b crawl 675 s 20×5, F 5 RPM X

6c trot 313 s 20×5, F/B 15 RPM X
6d trot 330 s 20×5, F/B 10 RPM X
6e trot 469 s 7×5, F/B 10 RPM X

Table 3. Detailed summary of the dataset used for
Experiment 6, including log duration, size of arena,
type of motion (F/B = forward/backward trajectory),
laser spin rate, and terrain features.

No motion capture system was available in this
space: to quantitatively evaluate the state estimation
performance on the dataset, we built a prior map
made up of a collection of 4 carefully aligned point
clouds and we estimated drift relative to it.

7.4.3.1 Crawling Gait

In the previous section, we have shown (while
trotting) that integrating VO reduces the pose drift
rate between the lower frequency AICP corrections.
Here, we focus on the importance of using VO in
addition to AICP.

Figure 11 shows the estimated error over the
course of Experiment 6a, recorded in the arena of
Figure 9. The robot started from pose A, reached B
and returned to A. The robot crawled for 40 m and
paused to make 3 sharp turns. The experiment was
at night and used the on-board LED lights.

During this run, the reference point cloud was
updated 4 times. After 860 s, the state estimation
performance had not significantly degraded, despite
no specific global loop closure being computed.

7.4.3.2 Trotting Gait

As mentioned previously, trotting is a more
dynamic gait with a higher proprioceptive drift rate,
which means that the VO could better contribute
when combined with AICP. Empirically, this can
be seen in the inset plot in Figure 9. In this
case, the algorithm with VO produces a smoother
trajectory (in green) than without (in yellow). This
is important because the robot’s base controller
uses these estimates to close position and velocity
control loops. Discontinuities in the velocity
estimate could lead to undesired destabilizing foot
forces and controller reactions.

In brief, for Experiments 6c–6e the integration of
AICP allowed state estimation with an average 3D
median translation error of approximately 4.9 cm.
The integration of VO further reduced the median

Frontiers 17



Camurri et al.

Figure 9. (A) Indoor repeatability tests. (B) Outdoor exploration tests in challenging scenarios. (C)
Comparison between estimated trajectories of HyQ from Experiment 6d: IMU and Leg Odometry (cyan);
IMU, Leg Odometry, VO (magenta); IMU, Leg Odometry (LO), AICP (yellow); IMU, LO, VO, AICP
(green). Note the IMU-LO-VO-AICP trajectory is smoother than the combination without VO (inset).

translation error to 3.2 cm (Figure 11). The RPE
over 10 m is in line with the indoor experiments.

Figure 10. Example of left camera image and
depth image produced by the HyQ’s stereo camera.
This reflects the difficult lighting conditions and
challenging structure of the test arena. The scene is
illuminated with the sensor’s on-board lights.

Figure 11. Estimated error of the state estimator
used in Experiment 6a. The experiment involved
the robot crawling for a total of 40 m.

7.5 ANYmal Experiments

The ANYmal dataset was collected at the Fire
Service College, a 32.5 m× 42.5 m industrial oil
rig facility used for firefighter training (Figure 12).
The ground truth was collected with a laser tracking
system, a Leica TS16, which tracked the robot’s
position with mm accuracy using a reflective prism
on the robot.

The robot started from an open area and was
commanded to trot at 0.3 m/s inside the facility,
between metal containers and stairs, performing
three loops before returning to the initial position,
for a total of 240 m distance covered in 33 min.
The dataset includes several extra challenges in
addtion to the ones of the previous section: 1)
the area covered is much wider, therefore we had
to trigger forced AICP reference updates on a
regular basis (i.e., once every 0.5 m traveled); 2) the
scene includes open areas where the robot looks
at the horizon, where a very limited number of
stereo features are available; 3) the scene contains
reflections due to water puddles which confuse the
visual feature tracking.

The different level of performance compared to
previous tests is due to several factors related to
the scenario used. In contrast with the previous
experiments, the open space and the size of the
area covered force triggering of frequent reference
updates (more than 40 updates vs. 4 updates in
Experiment 6 on HyQ). As no loop closures are
performed, in this situation the LIDAR cannot
completely eliminate the drift accumulated when
new reference updates are triggered. In addition
to that, the Velodyne scans are much sparser due
to the wider scenario (only a few LIDAR rings
are projected onto the ground), making hard to

This is a provisional file, not the final typeset article 18



Camurri et al.

Figure 12. (A) Experiment 7 with the ANYmal robot at the Fire Service College. (B) Onboard camera
feed during the experiment. Note the visual odometry challenging conditions due to reflections in the water.
(C) Estimated trajectory from Pronto with FOVIS and AICP active (blue) against ground truth (red). The
ground truth was not available in the bottom area. Start and end location for both algorithms are highlighted
with a circle and a cross, respectively.

constrain the robot position on the z-axis. We
have partially compensated for this problem by
augmenting the LIDAR data with a filtered output
of a downward facing RealSense D435.

Despite these challenges, the system is able to
effectively fuse all the sensors modalities, achieving
an RPE of 34 cm over 10 m, which corresponds
to 3.4 % error. The contribution of the LIDAR
localization is particulary evident on the z-axis
where it significantly reduces the characteristic
vertical drift caused by leg/ground compression
while trotting. This allowed to reduce the RPE by
60 % from the baseline algorithm with IMU and
Leg Odometry only. After 240 m traveled, the pose
estimate is less than 30 cm away from the ground
truth (cf. the estimate on the xy-plane in Figure
12C).

8 DISCUSSION

In the previous section we demonstrated the ability
of our system to overcome a variety of perception
challenges, including: low light conditions, motion
blur, reflections, dynamic motions, rough terrain.
We also showed its versatility by supporting a
variety of sensor modalities and four different
legged robots.

The simple but effective integration of delayed
signals into the time history described in
Section 5.1 allowed us to integrate two different
odometry sources (Visual and LIDAR) despite their
significant delay and different frequencies.

A limitation of the current approach is the
lack of measurement update triaging in case
of disagreement between different exteroceptive
sources. Currently, when an exteroceptive module
does not report failure, its confidence on the
measurement is only encoded by a fixed covariance
matrix. A possible approach is to implement a
mechanism that maps the error metrics specific
to a module (e.g., VO reprojection error, ICP
registration error) into a dynamically changing
covariance matrix.

Alternatively, transitioning from loosely to tightly
coupled approaches would allow joint optimization
over all the measurements, making the estimation
more robust against outlier updates. This is on going
work.

9 CONCLUSION

We have presented a state estimation framework to
perform sensor fusion of inertial, kinematic, visual
sensing and LIDAR on legged robots, built upon a
modular Extended Kalman Filter.

In particular, we indicated how our approach
supports dynamic maneuvers and operation in
sensor impoverished situations. The reliability of
our approach was demonstrated with dynamic gaits
and speeds up to 0.5 m/s. A particular technical
achievement has been reliably closing the loop with
this state estimator in dynamic gaits.

During experiments lasting over two hours,
our system was demonstrated to be robust and

Frontiers 19



Camurri et al.

continuously accurate, with a RPE less than 35 cm
over 10 m traveled for the most challenging scenario
and 2–3 cm in smaller areas.

Our current filter marginalizes out previous state
variables. In future work we will explore using
windowed smoothing to incorporate measurements
relative to previous filter states. We are also
interested in extending the state with dynamic
quantities such as CoM and linear/angular momenta
similarly to Xinjilefu et al. (2014).

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted
in the absence of any commercial or financial
relationships that could be construed as a potential
conflict of interest.

AUTHOR CONTRIBUTIONS

MC wrote the main article, implemented the
quadruped leg odometry and the overall filter
architecture, and run the experiments on HyQ.
MR performed LIDAR localization experiments
on the ANYmal robot. SN implemented the
LIDAR localization algorithm and performed the
localization experiments on Atlas, Valkyrie, and
HyQ. MF implemented the bipedal leg odometry,
revised and approved the manuscript.

FUNDING

This research has been conducted as part of the
ANYmal research community. It was part funded
by the EU H2020 Projects THING and MEMMO,
the Innovate UK-funded ORCA Robotics Hub
(EP/R026173/1) and a Royal Society University
Research Fellowship (Fallon).

ACKNOWLEDGMENTS

The authors would like to thank the Dynamic
Robot Systems Group (University of Oxford),
the MIT’s DARPA Robotics Challenge team, the
University of Edinburgh, and the Dynamic Legged
Systems Lab (IIT) for support with experimental
trials. The authors also thank the organizers of the
RSS and ICRA conferences (2017 edition) for the
opportunity to present the authors’ prior work.

REFERENCES
Ahn, S., Yoon, S., Hyung, S., Kwak, N., and Roh,

K. S. (2012). On-board odometry estimation
for 3d vision-based slam of humanoid robot.

In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IEEE), 4006–
4012

Barasuol, V., Buchli, J., Semini, C., Frigerio, M.,
De Pieri, E. R., and Caldwell, D. G. (2013). A
Reactive Controller Framework for Quadrupedal
Locomotion on Challenging Terrain. In IEEE
Intl. Conf. on Robotics and Automation (ICRA)
(Karlsruhe, Germany)

Bloesch, M., Burri, M., Sommer, H., Siegwart,
R., and Hutter, M. (2018). The two-state
implicit filter recursive estimation for mobile
robots. IEEE Robotics and Automation Letters 3,
573–580. doi:10.1109/LRA.2017.2776340

Bloesch, M., Gehring, C., Fankhauser, P., Hutter,
M., Hoepflinger, M. A., and Siegwart, R. (2013).
State estimation for legged robots on unstable
and slippery terrain. In IEEE/RSJ International
Conference on Intelligent Robots and Systems.
6058–6064. doi:10.1109/IROS.2013.6697236

Bloesch, M., Hutter, M., Hoepflinger, M.,
Leutenegger, S., Gehring, C., Remy, C. D., et al.
(2012). State estimation for legged robots -
consistent fusion of leg kinematics and IMU. In
Proc. of Robotics: Science and Systems (RSS)

Bry, A., Bachrach, A., and Roy, N. (2012). State
estimation for aggressive flight in GPS-denied
environments using onboard sensing. In IEEE
Intl. Conf. on Robotics and Automation (ICRA).
1–8

Bry, A., Richter, C., Bachrach, A., and Roy, N.
(2015). Aggressive flight of fixed-wing and
quadrotor aircraft in dense indoor environments.
The International Journal of Robotics Research
34, 969–1002. doi:10.1177/0278364914558129

Burri, M., Nikolic, J., Gohl, P., Schneider, T.,
Rehder, J., Omari, S., et al. (2016). The
euroc micro aerial vehicle datasets. The
International Journal of Robotics Research doi:
10.1177/0278364915620033

Camurri, M., Fallon, M., Bazeille, S., Radulescu,
A., Barasuol, V., Caldwell, D. G., et al. (2017).
Probabilistic Contact Estimation and Impact
Detection for State Estimation of Quadruped
Robots. IEEE Robotics and Automation Letters
2, 1023–1030

Chilian, A., Hirschmüller, H., and Görner, M.
(2011). Multi-sensor data fusion for robust pose
estimation of a six-legged walking robot. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS) (San Francisco, California)

Diebel, J. (2006). Representing attitude: Euler
angles, unit quaternions, and rotation vectors
(Stanford University, California)

Fallon, M. F., Antone, M., Roy, N., and Teller,
S. (2014). Drift-free humanoid state estimation
fusing kinematic, inertial and LIDAR sensing.

This is a provisional file, not the final typeset article 20



Camurri et al.

In IEEE/RSJ Int. Conf. on Humanoid Robots
(Madrid, Spain)

Featherstone, R. (2008). Rigid Body Dynamics
Algorithms (Springer)

Forster, C., Carlone, L., Dellaert, F., and
Scaramuzza, D. (2017a). On-Manifold
Preintegration for Real-Time Visual–Inertial
Odometry. IEEE Transactions on Robotics 33,
1–21. doi:10.1109/TRO.2016.2597321

Forster, C., Zhang, Z., Gassner, M., Werlberger, M.,
and Scaramuzza, D. (2017b). Svo: Semidirect
visual odometry for monocular and multicamera
systems. IEEE Transactions on Robotics 33, 249–
265. doi:10.1109/TRO.2016.2623335

Furgale, P., Rehder, J., and Siegwart, R. (2013).
Unified temporal and spatial calibration for multi-
sensor systems. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems.
1280–1286. doi:10.1109/IROS.2013.6696514

Hartley, R., Jadidi, M. G., Gan, L., Huang, J.,
Grizzle, J. W., and Eustice, R. M. (2018a).
Hybrid contact preintegration for visual-inertial-
contact state estimation using factor graphs. In
2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 3783–
3790

Hartley, R., Mangelson, J., Gan, L., Ghaffari
Jadidi, M., Walls, J. M., Eustice, R. M., et al.
(2018b). Legged robot state-estimation through
combined forward kinematic and preintegrated
contact factors. In 2018 IEEE International
Conference on Robotics and Automation (ICRA).
4422–4429. doi:10.1109/ICRA.2018.8460748

Hirschmüller, H. (2008). Stereo processing by semi-
global matching and mutual information. IEEE
Trans. Pattern Anal. Machine Intell. 30, 328–341

Hornung, A., Wurm, K. M., and Bennewitz,
M. (2010). Humanoid robot localization in
complex indoor environments. In 2010 IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IEEE), 1690–1695

Huang, A. S., Bachrach, A., Henry, P., Krainin,
M., Maturana, D., Fox, D., et al. (2011). Visual
odometry and mapping for autonomous flight
using an RGB-D camera. Proceedings of the
International Symposium on Robotics Research
(ISRR)

Hutter, M., Gehring, C., Jud, D., Lauber,
A., Bellicoso, C. D., Tsounis, V., et al.
(2016). ANYmal - a highly mobile and
dynamic quadrupedal robot. In 2016 IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS). 38–44. doi:10.1109/IROS.
2016.7758092

Jenelten, F., Hwangbo, J., Tresoldi, F., Bellicoso,
C. D., and Hutter, M. (2019). Dynamic
locomotion on slippery ground. IEEE Robotics

and Automation Letters 4, 4170–4176. doi:10.
1109/LRA.2019.2931284

Koolen, T., Bertrand, S., Thomas, G., de Boer,
T., Wu, T., Smith, J., et al. (2016).
Design of a momentum-based control framework
and application to the humanoid robot Atlas.
International Journal of Humanoid Robotics 13

Lynen, S., Achtelik, M., Weiss, S., Chli, M., and
Siegwart, R. (2013). A robust and modular
multi-sensor fusion approach applied to MAV
navigation. In IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS) (Tokyo, Japan)

Ma, J., Bajracharya, M., Susca, S., Matthies,
L., and Malchano, M. (2016). Real-time pose
estimation of a dynamic quadruped in GPS-
denied environments for 24-hour operation. Intl.
J. of Robotics Research 35, 631–653

Mur-Artal, R., Montiel, J. M. M., and Tardós, J. D.
(2015). ORB-SLAM: A versatile and accurate
monocular SLAM system. IEEE Trans. Robotics
31, 1147–1163

Nobili, S., Camurri, M., Barasuol, V., Focchi,
M., Caldwell, D., Semini, C., et al. (2017a).
Heterogeneous sensor fusion for accurate state
estimation of dynamic legged robots. In Robotics:
Science and Systems (RSS)

Nobili, S., Scona, R., Caravagna, M., and Fallon,
M. (2017b). Overlap-based ICP tuning for robust
localization of a humanoid robot. In IEEE Intl.
Conf. on Robotics and Automation (ICRA). 4721–
4728

Olson, E. (2010). A passive solution to the
sensor synchronization problem. In IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS) (Taipei, Taiwan)

Pomerleau, F., Colas, F., Siegwart, R., and
Magnenat, S. (2013). Comparing ICP variants
on real-world data sets. Autonomous Robots 34,
133–148

Qin, T., Li, P., and Shen, S. (2018). VINS-
Mono: A robust and versatile monocular visual-
inertial state estimator. IEEE Transactions on
Robotics 34, 1004–1020. doi:10.1109/TRO.2018.
2853729

Radford, N. A., Strawser, P., Hambuchen, K.,
Mehling, J. S., Verdeyen, W. K., Donnan, A. S.,
et al. (2015). Valkyrie: NASA’s first bipedal
humanoid robot. Journal of Field Robotics 32,
397–419. doi:10.1002/rob.21560

Reinke, A., Camurri, M., and Semini, C. (2019). A
factor graph approach to multi-camera extrinsic
calibration on legged robots. In 2019 Third IEEE
International Conference on Robotic Computing
(IRC). 391–394. doi:10.1109/IRC.2019.00071

Rotella, N., Bloesch, M., Righetti, L., and Schaal, S.
(2014). State estimation for a humanoid robot. In
Proc. of the IEEE/RSJ International Conference

Frontiers 21



Camurri et al.

on Intelligent Robots and Systems (IROS). 952–
958

Segal, A., Haehnel, D., and Thrun, S. (2009).
Generalized-icp. In Robotics: science and
systems (Seattle, WA), vol. 2, 435

Semini, C., Tsagarakis, N. G., Guglielmino, E.,
Focchi, M., Cannella, F., and Caldwell, D. G.
(2011). Design of HyQ – A hydraulically
and electrically actuated quadruped robot.
Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control
Engineering 225, 831–849

Shen, S., Mulgaonkar, Y., Michael, N., and
Kumar, V. (2014). Multi-sensor fusion for
robust autonomous flight in indoor and outdoor
environments with a rotorcraft mav. In IEEE Intl.
Conf. on Robotics and Automation (ICRA) (Hong
Kong)

Sturm, J., Engelhard, N., Endres, F., Burgard,
W., and Cremers, D. (2012). A Benchmark
for the Evaluation of RGB-D SLAM systems.
In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 573–580. doi:10.
1109/IROS.2012.6385773

Wim Meeussen (2010). Coordinate Frames
for Mobile Platforms. Tech. Rep. REP
– 105. https://www.ros.org/reps/
rep-0105.html

Wisth, D., Camurri, M., and Fallon, M.
(2019). Preintegrated velocity bias estimation to
overcome contact nonlinearities in legged robot
odometry. arXiv , 1910.09875

Wisth, D., Camurri, M., and Fallon, M. (2019).
Robust legged robot state estimation using
factor graph optimization. IEEE Robotics and
Automation Letters 4, 4507–4514. doi:10.1109/
LRA.2019.2933768

Xinjilefu, X., Feng, S., and Atkeson, C. G.
(2014). Dynamic state estimation using quadratic
programming. In IEEE/RSJ International
Conference on Intelligent Robots and Systems.
989–994. doi:10.1109/IROS.2014.6942679

Xinjilefu, X., Feng, S., and Atkeson, C. G. (2015).
Center of mass estimator for humanoids and its
application in modelling error compensation, fall
detection and prevention. In Humanoids, IEEE-
RAS International Conference on Humanoid
Robots

This is a provisional file, not the final typeset article 22


