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Abstract— This paper is about long term navigation in

dynamic environments. In previous work we introduced a

framework which stored distinct visual appearances of a

workspace, known as experiences. These are used to improve

localisation on future visits. In this work we introduce a new

introspective process, executed between sorties, thats aims by

careful discovery of the relationships between experiences, to

further improve the performance of our system. We evaluate

our new approach on 37km of stereo data captured over a three

month period.

I. INTRODUCTION

This paper is concerned with improving the performance
of a long term navigation system. Before we present the
novel contributions of this paper in Section III, we first recap
our previous work on experience-based navigation [1] in
Section II. Implementation details and system performance
are briefly discussed in Section IV, results are presented in
Section V and related work is covered in Section VI.

II. BACKGROUND: EXPERIENCE-BASED NAVIGATION

A. Motivation

For robotic systems to achieve truly long-term autonomy
they must be able to deal with dynamic workspaces. Changes
to an environment can happen for a variety of reasons and
at different rates. Moving objects, such as people and cars
can cause sudden structural change, the trajectory of the sun
produces different lighting conditions over the period of a
day and the passage of the seasons results in a long term
change in appearance.

One area that is affected by this problem is Visual Odome-
try (VO), in which it is often implicitly assumed that changes
in the scene appearance are solely as a result of the ego-
motion of the camera. The majority of traditional navigation
approaches build a single map on the initial visit and hope
this is sufficient for future use. The assumption being that
the environment will not change appearance drastically, and
thus it is possible to localise using this single snapshot.

Features may be added or updated during future visits.
However should the system continue to accumulate features
for all time? Given enough time, in such an approach the map
will become bloated with features, many of which will have
no relevance to each other. Also what should happen if the
workspace has drastically changed appearance - for example
comparing a map created on a bright sunny afternoon with
a misty morning? We propose instead of attempting to fuse
data for all time into a single frame of reference, to allow
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each experience of the world to remain independent, but to
capture their topological relationships in a graph.

Before we discuss how our experienced base navigation
works we briefly introduce some key terminology. Firstly
what our VO system produces, secondly what an experience
is, and finally how localisers operate over experiences.

B. Visual Odometry

Visual Odometry (VO) is a well understood problem and
several systems have previously been demonstrated [2], [3].
We now briefly introduce the notation of ours, and what
we get as output. For a sequence of stereo frames Fk =
{F0, . . . ,Fk}, taken at times k, our VO system produces a
corresponding sequence of nodes, nk. A 6 degree-of-freedom
transformation tk links sequential nodes nk�1 to nk,

tk = [x, y, z, ✓r, ✓p, ✓q]
T (1)

where ✓r, ✓p and ✓q are roll, pitch and yaw respectively.
Frame to frame motion estimation is achieved by matching

the image descriptors of 3D landmarks. Landmarks are
created when previous ones cannot be matched to the current
frame Fk. When this happens, the new landmarks are stored
in the node, nk, from which they were first observed. A
landmark, li,k, is described as follows:

li,k = [x, y, z]T (2)

where i is a global landmark index and k denotes which
node the 3D vector is relative to. Finally, every landmark
observed in Fk is recorded in a list in nk. Many of these
landmarks will be stored in other nodes - principally the one
from which they were first observed.

Landmarks can be stored in one frame, but observed in
another. For the estimation process it is required that a
landmarks position can be expressed relative to different
nodes. To achieve this we define the following operation,
p⇧q , which transforms a landmark from frame p to frame q.

l⇤,q  p⇧q(l⇤,p) (3)

C. Experiences

An experience is simply a sequential subset of the output
from the VO system. We denote each experience as jE .
The conditions which trigger the saving of an experience
are discussed in Section II-E.

Concretely, jE is a sequence of nodes, connected via
transformations and the set of all landmarks observed in the
sequence. Individual nodes within an experience are specified



as jEm. Note that once an experience has been saved, its
internal data is never modified. No landmarks are added
or updated, or pose estimates refined based on observations
from future visits to the area.

D. Localisers

In our previous work we introduced the notion of a
localiser which operates on an experience. Each experience
is assigned a localiser, which computes the transformation
from a node in its experience to the current stereo frame from
the live sequence, Fk. These transformations are computed
in exactly the same way as the VO system computes the
motion between two stereo frames. The only difference is
that the landmarks do not come from the previous frame,
Fk�1, instead they come from the previous position in the
experience. We do not attempt to modify an experience once
it is stored, so a localiser can treat it as constant.

Localisers must be able to tell when they are “lost”.
This occurs when the live sequence of stereo frames cannot
be matched against the current position in the associated
experience. Given the live frame, each one produces a binary
result indicating if localisation has been successful:

jL(Fk) =

⇢
1 if localised
0 if lost. (4)

For every successful localiser of Fk, each one can return
the node Fk was closest to.

jEm  jL() (5)

If a localiser becomes lost, it does not attempt to re-
localise to future images. It can be re-started if it receives
outside help. One source of outside assistance is other
localisers, operating on different experiences. How localisers
share position information is introduced in the next section,
increasing this interaction and improving its utility is the
focus of this paper.

E. Experienced based navigation

We now explain how our previous work operates to
achieve long term navigation in changing environments.
While running we always perform VO on the live image
stream. The question of whether this is saved as a new
experience is a function of the result of the localisers running
on the current experience set. If N or more localisers are
successful, we believe our current representation of the local
region to be sufficient and discard the VO output. However
when the number of successful localisers falls below N , we
create a new experience from the VO output. This continues
until the number of successful localisers returns to N or
above, when saving is stopped.

Experience creation is driven by the success or failure of
localisation to prior experiences. This results in us naturally
capturing the varying complexity of the world. In areas
of high visual variation we store more experiences, while
in regions that remain visually similar over time, we save
relatively few experiences as our prior ones are sufficient
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Fig. 1. An outline of our previous work. While traversing an environment a
stereo camera produces a stream of frames. A visual odometry (VO) system
consumes these to estimate motion and landmark positions. In this example,
the decision to save or discard the VO output is a function of the ability
to localise against experience 1 and 2. In epochs A and C the live frame
stream is successfully localised against both experiences, meaning the VO
output is not saved. However in epoch B only experience 2 is localised
against the live frame. In this example we require the minimum number of
successful localisers to be 2, so in this region a new experience is created
from the VO output. This figure is reproduced from [1].

for localisation. If we allow N to be greater than one,
more experiences will be created, but we also become more
resilient to localisation failures.

III. STITCHING EXPERIENCES

A. Motivation

Ideally we strive to store the minimum number of expe-
riences needed to represent an environment, a surplus leads
to wasted computation and memory resources. We want just
the right number to facilitate long term navigation.1 This
motivates us to fully exploit all the information in each and
every experience, and also how they inter-relate. Failure to
do so reduces our ability to re-localise within an experience,
leading to an unnecessary genesis of a new experience.

The opportunity to exploit experiences optimally occurs
naturally in two forms. The first is in starting a localiser
to run on an experience, as every experience is not always
relevant to the current position in the world. Consider a
vehicle traveling from a relatively unchanging area to one of
high visual variance, it needs to know when to activate the
extra experiences related to that area. The second is when
an experience temporarily becomes insufficient to explain
the current visual feed (the localiser fails). For example
a recently parked high sided vehicle totally obscures the
scene as we pass. The experience will be relevant a short
while later, at which point it needs to be re-started. As
each experience is independent, global position estimation
between experiences cannot be achieved by integrating the
local relative transformations, as these are these are globally
inaccurate.

As global position look-up is not possible, we look for
other ways localisers can be started or re-started. One option
would be to use an external loop closer such as FAB-MAP
[4], where the live image is matched to a node in the saved

1We note that certain parts of the environment require more experiences
than others, on account of greater visual variation.



Fig. 2. Each experience can be represented as a graph, where the stereo frames are represented as nodes (shown as triangles) and metric transformation
information describes how they are connected (indicated by the directed black arrows). The figure above shows three experiences, blue, red and purple.
These can be formed into a single larger graph G, which contains all experiences. Edges can then be added between experiences (denoted as undirected
dashed green lines) indicating the nodes refer to the same physical place in the world. This is demonstrated for the far right node in each experience. Each
associated image is of the same place in the environment, so edges can be created between them. The focus of this work is how to increase the quality
and quantity of these edges and what impact this has on localisation performance.

experience. However this is unlikely to be particularly suc-
cessful due to the relatively low recall rate at high precision.
Another approach would be to annotate experiences with
metadata, such Global Positioning System (GPS) points, or
higher-order descriptions such as known road junctions or
buildings, however these are not always available and GPS
often suffers from significant drift over time.

B. Experience Graph
As previously explained, an experience is a set of con-

nected nodes. Consider if these were sub-graphs in a single
large graph containing all experiences, G. Now assume we
have a method of introducing an edge between two sub-
graphs that indicates the two connected nodes observed
the same physical place in the world. When a successful
localiser arrives at a node with one of these edges, it can
query the edge for which experience and location within that
experience is at the other end. The localiser associated with
the other experience can then be informed where to start
(if the localiser is not currently active) or to restart (if the
localiser is lost). Using this connected graph, localisers can
inform each other when to start, and to aid each other when
lost. In our previous work these inter-experience edges were
referred to as “places”.

The focus of this work is how the inter-experience edges
of G can affect the performance of the localisation system.
By introducing as many high quality edges as possible, we
increase the information shared between experiences. These
can then be used to aid localiser initialisation and restarting.
We now present four methods for discovering the structure of
G. The final two are extensions of our previous work. They
are processes which run between vehicle outings. Their aim
is to take any new experiences created from the previous
outing, introduce the sub-graph formed from their nodes to

G, and then look for opportunities to create edges between
the newly inserted nodes and all other nodes (experiences).

C. Graph Structure Discovery

1) No Discovery: To demonstrate the importance of G’s
connectivity levels, in this approach we only allow inter-
experience edges to be created which include the start of
an experience. This enables experiences to be started if
they are not active, but prevents the re-initialisation of lost
experiences.

2) Live Discovery: This approach is the one presented in
our previous work [1], where it is referred to as “places”.
Here edges are created when the live stereo stream is
localised in more than one experience. This means G can
only be changed when the vehicle is driving, and only in the
regions covered by the vehicle on that trip. For example if the
previous sortie included the car park, but it is not included
on the next outing, the car park section cannot be connected
to other experiences of that area. This dependancy on the
live system to create edges is undesirable.

3) GPS Discovery: In this variant, for every experience
created we also store the GPS position of every node. When
an experience is created, for each new node, we find the
nearest position in all other experiences via GPS. If the
distance is less than some threshold2, we introduce an edge
connecting them.

4) Refined Discovery: In this final version we attempt
to negate the drift that GPS suffers from over time. As
our experiences are collected over several months, our data
is affected by this drift. We achieve an initial match to
other experience nodes using the same approach as GPS

2Different experiences refer to different areas in the world, and so may
not be relevant to each other
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Fig. 3. An overhead of the Begbroke site, including the two loops driven
over the three month period. The outer loop was driven 47 times (thicker
line). The inner loop (thinner line) was driven 6 times. The colour of the
plot at each point indicates how many experiences are stored there. This
figure is reproduced from [1].

Discovery. We then look to refine this estimate by matching
the new node against a sequence of nodes surrounding the
GPS suggestion, based on the same stereo frame to frame
estimation techniques used in the VO system.

Given the new node n

⇤ and a candidate node proposed
from GPS, nc, we take a small window of nodes either side
of nc, denoted {nc}w and compute the transform from n

⇤ to
each node in the window. Next, assuming all transforms are
valid, we compute the translation from n

⇤ to each {nc}w. If
we find a local minima which is not on the bounds, i.e. n⇤

really did pass by the window {nc}w, we take the candidate
node in {nc}w with the smallest translation to n

⇤ to be the
same place. The appropriate edge is then created in G.

IV. IMPLEMENTATION

Our Visual Odometry system used in this work oper-
ates on image frames from a stereo camera. It extracts
points of interest from the images using the FAST cor-
ner extractor [5]. Robust feature matching between frames
is achieved using Binary Robust Independent Elementary
Features (BRIEF) descriptors [6]. Efficient second-order
matching [7] is then used to refined successful matches
to sub-pixel precision. The ego-motion estimation between
two frames is achieved using a RANSAC [8] step fol-
lowed by a least-squares optimisation to refine the solu-
tion. We assume the vehicle INS provides a ground truth
for motion estimation. Given this, the relative transforms
between frames, tk, produced by the VO system have
a mean error of [�0.0093,�0.0041,�0.0420] meters and
[�0.0239, 0.0021, 0.0040] degrees and standard deviation of
[0.0225, 0.0245, 0.0155] meters and [0.0918, 0.0400, 0.0383]
degrees.

One benefit of keeping experiences independent, is that
localisation of each one to the current live frame is also inde-
pendent. This means localisation across multiple experiences
can be performed in parallel. By using BRIEF descriptors

to compute feature matches, we only require a CPU to
achieve frame rate performance, while achieving a perfor-
mance similar to Speeded Up Robust Features (SURF) [9].
SURF implementations can be made to run at frame rate but
require a GPU to achieve this [10]. As each localiser requires
access to fast feature matching, running multiple independent
localisation modules in parallel would be difficult on a single
GPU (the maximum on most computer systems), compared
an implementation only requiring the CPU and using a multi-
core machine.

V. RESULTS

To evaluate our proposed localisation algorithm we repeat-
edly drove two partially overlapping loops around Begbroke
Science Park. Over a three month period we collected 53
data sets, each one approximately 0.7km long. We drove the
vehicle, Fig. 4, in a variety of weather conditions and times
of day to capture the visual variation of the route.

Fig. 3 displays the two routes that were repeatedly driven
along with the typical performance of the system. Pre-
dominately the outer loop (shown with a thicker line) was
traversed, while the inner loop (thinner line) was completed
on the final 6 runs. The number of experiences that are
laid down at each point along the route are indicated by
the intensity of the plot. Note that different regions require
different number of experiences. The regions to the north
and east require relatively few experiences for localisation
as these areas are visually stable. In contrast, the area to the
north west and south west corner demand significantly more
experiences. The region to the north west over looks a car
park, which exhibits daily fluctuation. The section of road in
the south west corner is covered by overhanging tress. These
cause strong shadowing effects, making localisation against
previous experiences difficult.

To test how the connectivity of G affects localisation
performance we evaluate the four variants of our approach
outlined in Section III-C.
• No Discovery - inter-experiences edges only contain

experience beginnings. Allows experiences to be started
but not re-started once lost.

• Live Discovery - inter-experience edges created when
the live VO system successfully localises in more than
one experience. Implementation used in our previous
work [1].

• GPS Discovery - inter-experience edges between nodes
generated from closest GPS points.

• Refined Discovery - candidate inter-experience edges
suggested from GPS and then refined using robust
image matching.

We present results for the minimum number of localisers
N = 1 and 2 in Fig. 5 and Fig. 6. These are plots of outing
number versus how much of the VO output needed to be
saved for that run. This can also be thought of as how often
the system was unable to localise against prior experiences,
i.e. got lost. Note that the features in the graphs follow the
nature of the data we collected. On runs 35-38 we drive the
vehicle at dusk for the first time, with large pools of water



Fig. 4. 37km of visual data was collected over a three month period using
the Wildcat, the group’s vehicle.

on the road and light drizzle. The environment under these
conditions had not been experienced previously, explaining
the large jump in experiences saved. After this the vehicle
makes several sorties where little or no experiences are
created as we have a relatively complete representation of
the workspace. We start to drive the inner loop of the route
on visit 47, which causes a large and sustained spike in the
number of experiences saved from this point onwards as the
inner section of the loop has not previously been visited and
is novel to the system.

The total percent of saved frames for each variant is shown
in Table I. These numbers are the fraction of the maximum
amount of experience data that could be saved, i.e. if we
stored all VO output. As experience creation is driven by
localisation failure, a lower number here indicates the system
is performing better, i.e. it is localised for longer and is lost
less. Performing Refined Discovery results in a 27% and
and 20% improvement for N = 1 and 2 respectively, when
compared to our previous work, Live Discovery. Interestingly
GPS Discovery does not performed as well as Refined
Discovery. This is likely to be caused by the quality of the
inter-experience edges in G being substandard due to the
drift present in GPS data.

Note how in both Fig. 5 and Fig. 6 GPS and Refined
Discovery do not always out perform the original Live Dis-
covery variant. This is because performance on a particular
run is directly tied to what has been saved previously. As
the Live Discovery stores more than is necessary in earlier
runs, on some later outings it has more experiences to draw
from and sometimes stays localised for longer than the other
systems. However overall Table I shows that Refined Dis-
covery performs best, followed by GPS Discovery and then
Live Discovery. No Discovery always performs worst and
saves significantly more experiences that the other variants.

In Fig. 7 we show, for each visit, the average number
of successful localisers while the system is not lost. We
see that both variants that process newly saved experiences
between outings generally record a higher number of suc-
cessful localisers for each run. Given they also store less
experiences, this implies they are making much better use of
the information they already have stored. By increasing the
quantity and quality of edges in G, we have shown that we
can stay localised for longer and are required to save less, as
we making better use of the information we currently have.
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Fig. 5. System performance when using different graph structure discovery
approaches. N = 1 for all runs.
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Fig. 6. System performance when using different graph structure discovery
approaches. N = 2 for all runs.

VI. RELATED WORK

The previous work that has attempt to tackle the long term
navigation problem has generally approached it with a more
typical “global metrically correct” approach. Konolige and
Bowman’s view-based map system [11] was developed to
deal with dynamic indoor environments [12]. Milford and
Wyeth’s RatSLAM system [13] is also able to store different
representations of the same place. In both of these systems,
different appearances are connected with metric information
to mutual nodes, so their different views of the world are
already linked together. Biber and Duckett [14] create a map
that has both long term and short term features by sampling
prior laser maps at a series of time scales. This allows them to
deal with long term structural change and short term dynamic
objects. Their prior laser maps exist in a single global frame
of reference, so fusing them to create a new map is trivial.

In contrast to these previous approaches, we do not adopt a
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Fig. 7. For each run, the average number of successful localisers while the system is not lost is shown for each system variant. Note that GPS and Refined
Discovery, both variants that spend time after a run to perform better matching of newly saved experiences have a higher number of successful localisers.
Given both of these variants save less, it shows they are leveraging their experiences better. Results shown for N = 2.

TABLE I
PERCENTAGE OF SAVED OUTPUT (LOWER IS BETTER). GPS AND

REFINED DISCOVERY METHODS WORK BEST.

Discovery Type
No Discovery Live GPS Refined

N = 1 34.93% 23.35% 19.89% 17.05%
N = 2 43.95% 26.48% 24.33% 21.16%

single frame of reference. When new experiences are saved,
they remain independent. The advantage of this approach is
that multiple experiences can cover the same physical space
without being forced into the same frame of reference and
localisation is trivially parallelised. The difficulty comes in
knowing where different experiences cover the same physical
space. We therefore require some sort of linking between
experiences.

VII. CONCLUSION

In this paper we have shown how our original continuous
localisation of a road vehicle can be improved with a new
process, run between outings, to enhance the information
shared between experiences. Previously we demonstrated
that ongoing localisation can be achieved by saving distinct
visual experiences, but that leveraging these when needed
is not trivial. By placing all experiences in a single graph,
we can create topological links between nodes that can be
used to aid localisation. In our prior work we only augmented
these edges when the system was online. By introducing this
new step, we can increase the quality and quantity of these
edges. Our results show that doing this, we can achieve a
significant improvement in performance over our previous
approach. We can stay localised for longer and need to save
less information to achieve it.
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