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Abstract— Radar presents a promising alternative to lidar
and vision in autonomous vehicle applications, able to detect
objects at long range under a variety of weather conditions.
However, distinguishing between occupied and free space from
raw radar power returns is challenging due to complex inter-
actions between sensor noise and occlusion.

To counter this we propose to learn an Inverse Sensor Model
(ISM) converting a raw radar scan to a grid map of occupancy
probabilities using a deep neural network. Our network is self-
supervised using partial occupancy labels generated by lidar,
allowing a robot to learn about world occupancy from past ex-
perience without human supervision. We evaluate our approach
on five hours of data recorded in a dynamic urban environment.
By accounting for the scene context of each grid cell our model
is able to successfully segment the world into occupied and
free space, outperforming standard CFAR filtering approaches.
Additionally by incorporating heteroscedastic uncertainty into
our model formulation, we are able to quantify the variance
in the uncertainty throughout the sensor observation. Through
this mechanism we are able to successfully identify regions of
space that are likely to be occluded.

I. INTRODUCTION

Occupancy grid mapping has been extensively studied [1],
[2] and successfully utilised for a range of tasks including
localisation [3], [4] and path-planning [5]. One common
approach to occupancy grid mapping uses an inverse sensor
model (ISM) to predict the probability that each grid cell in
the map is either occupied or free from sensor observations.
Whilst lidar systems provide precise, fine-grained measure-
ments, making them an obvious choice for grid mapping,
they fail if the environment contains fog, rain, or dust [6].
Under these and other challenging conditions, FMCW radar
is a promising alternative that is robust to changes in lighting
and weather and detects long-range objects, making it well
suited for use in autonomous transport applications.

However, two major challenges must be overcome in
order to utilise radar to this end. Firstly, radar scans are
notoriously difficult to interpret due to the presence of
several pertinent noise artefacts. Secondly, by compressing
information over a range of heights onto a dense 2D grid of
power returns identifying occlusion becomes difficult. The
complex interaction between occlusion and noise artefacts
introduces uncertainty in the state of occupancy of each
grid cell which is heteroscedastic, varying from one world
location to another based on scene context, and aleatoric [7],
inherent in radar data by way of the scan formation process.

In order to successfully reason about world occupancy,
we posit that a model that is able to reason about scene
context is essential. To this end, we formulate the problem
of determining an ISM as a segmentation task, leveraging a
deep network to learn the probability distribution of occu-
pancy from raw data alone. This allows us to successfully
determine regions of space that are likely to be occupied
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Fig. 1. Our network learns the distribution of occupancy from experience
alone. By reasoning about scene context it is able to successfully identify
regions of space that are likely to be occupied and free. The uncertainty
associated with each grid cell is allowed to vary throughout the scene
by predicting the noise standard deviation alongside the predicted logit of
each grid cell. These are combined to generate a grid map of occupancy
probabilities. The uncertainty predicted by our network can be used to
successfully identify regions of space that are likely to be occluded.

and free in light of challenging noise artefacts. Simultane-
ously, by explicitly modelling heteroscedastic uncertainty,
we are able quantifying to quantify the latent uncertainty
associated with each world cell arising through occlusion.
Utilising approximate variational inference we are able to
train our network using self-supervision relying on partial
labels automatically generated from occupancy observations
in lidar.

We train our model on real-world data generated from five
hours of urban driving and successfully distinguish between
occupied and free space, outperforming constant false-alarm
rate (CFAR) filtering in average intersection over union
performance. Additionally we show that by modelling het-
eroscedastic uncertainty we are able to successfully quantify
the uncertainty arising through the occlusion of each grid
cell.

II. RELATED WORK

Inverse sensor models (ISMs) [1] are used to convert noisy
sensor observation to a grid map of occupancy probabilities.
For moving platforms, a world occupancy map can then be
sequentially generated from an ISM, multiple observations,
and known robot poses using a binary Bayes filter [?]. Using
lidar data, ISMs are typically constructed using a combi-
nation of sensor-specific characteristics, experimental data,
and empirically-determined parameters [8], [9], [10]. These
human-constructed ISMs struggle to model challenging radar
defects and often utilise limited local information to predict
each cell’s occupancy without accounting for scene context.

Instead, raw radar scans are often naively converted to
binary occupancy grids using classical filtering techniques
that distinguish between objects (or targets) and free space
(or background). Common methods include CFAR [11] and
static thresholding. However, both return binary labels rather
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than probabilities, and neither is capable of addressing all
types of radar defects or capturing occlusion. Additionally,
the most popular approach, CFAR, imposes strict assump-
tions on the noise distribution and requires manual parameter
tuning. In contrast, using deep learning methods, as first pro-
posed by [12], allows the distribution of world occupancy to
be learned from raw data alone, accounting for the complex
interaction between sensor noise and occlusion through the
higher level spatial context of each grid cell.

In order to capture uncertainty that varies from one grid
cell to the next we incorporate heteroscedastic uncertainty
into our formulation inspired by [7]. Our variational re-
formulation of [7] is closely related to the seminal works
on variational inference in deep latent variable models [13],
[14] and their extension to conditional distributions [15].

Drawing on the successes of deep segmentation in biomed-
ical applications, [16] and vision [17] we reformulate the
problem of learning an inverse sensor model as neural
network segmentation. Specifically, we utilise a U-net ar-
chitecture with skip connections [18]. In order to map from
an inherently polar sensor observation to a Cartesian map we
utilise Polar Transformer Units (PTUs) [19].

III. DEEP INVERSE SENSOR MODELLING IN
RADAR

A. Setting

Let x ∈ RΘ×R denote a full radar scan containing Θ
azimuths of power returns at R different ranges for each
full rotation of the sensor. Partitioning the world into a
H ×W grid, y ∈ {0, 1}H×W gives the occupancy state of
each grid cell, where yu,v = 1 if cell (u, v) is occupied
and yu,v = 0 if (u, v) is free. Partial measurements of
occupancy ŷ are determined by combining the output of
multiple 3D lidars and projecting the returns over a range
of heights onto a 2D grid. In order to separate the region of
space where no labels exist most likely as a consequence of
full occlusion, from space that is likely to only be partially
occluded or for which no labels exist due to a limited field of
view of the lidar sensors, the observability state of each cell
ou,v is recorded as 0, 1 or 2 corresponding to unobserved,
observed and partially observed space respectively. The full
labelling procedure is described in Figure 2. This process
is repeated for N radar-laser pairs to generate a data set
D = {xn, (ŷ,o)n}Nn=1 of training examples from which we
aim to learn an inverse sensor model py|x ∈ [0, 1]H×W such
that pu,vy|x = p(yu,v = 1|x) gives the probability that cell
(u, v) is occupied dependent on the full radar scan x

B. Heteroscedastic Aleatoric Uncertainty and FMCW Radar

FMCW Radar is an inherently noisy modality suffer-
ing from speckle noise, phase noise, amplifier saturation
and ghost objects. These conspire to make the distinction
between occupied and free space notoriously difficult. A
radar’s long range as well as its ability to penetrate past first
returns make it attractive but also challenging. In particular, a
radar’s capacity for multiple returns along an azimuth implies
varying degrees of uncertainty depending on scene context:

Fig. 2. Generated training labels from lidar. The image on the left shows
the lidar points (red) projected into a radar scan x converted to Cartesain
co-ordinates for visualisation. The right image shows the generated training
labels. Any grid cell (u, v) with a lidar return is labelled as occupied ŷu,v =
1 (white). Ray tracing along each azimuth, the space immediately in front
of the first return is labelled as ŷu,v = 0 (black), the space between the
first and last return or along azimuths in which there is no return is labelled
as partially observed, ou,v = 2, (dark grey) and the space behind the last
return is labelled as unobserved, ou,v = 0, (light grey). Any space that is
labelled as occupied or free is labelled as observed, ou,v = 1

the distinction between occupied and free space becomes
increasingly uncertain as regions of space become partially
occluded by objects. Examples of each of these problems are
further explained in Figure 3. As such, high power returns do
not always denote occupied and likewise, low power returns
do not always denote free.

Uncertainties in our problem formulation depend on the
world scene through a complex interaction between scene
context and sensor noise, and are inherent in our data as
a consequence of the image formation process. As such
they are, heteroscedastic as they depend on scene context
and aleatoric as they are ever present in our data [7].
In order to successfully determine world occupancy from
an inherently uncertain radar scan we seek a model that
explicitly captures heteroscedastic aleatoric uncertainty. By
framing this problem as a deep segmentation task we lever-
age the power of neural networks to learn an ISM which
accounts for scene context in order to determine – from raw
data alone – occupied from free space in the presence of
challenging noise artefacts. Simultaneously, as a result of our
heteroscedastic uncertainty formulation we are also able to
learn which regions of space are inherently uncertain because
of occlusion.

C. Modelling Heteroscedastic Aleatoric Uncertainty

Instead of assuming that the uncertainty associated with
each grid cell is fixed, as is typically assumed in standard
deep segmentation approaches, by using a heteroscedastic
model the uncertainty in each grid cell γφ(x) is allowed to
vary. This is achieved by introducing a normally distributed
latent variable zu,v associated with each grid cell [7] and
predicting the noise standard deviation γφ(x) alongside the
predicted logit µφ(x) of each each zu,v with a neural
network fφ :

pφ(z|x) = N (z|µφ(x),γφ(x)I) (1)
[µφ(x),γφ(x)] := fφ(x) (2)
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Fig. 3. Raw radar and the lidar ground truth. An ISM must be able to pick out faint objects, such as cars (pink diamonds), from the background speckle
noise, in light of challenging noise artefacts such as saturation (yellow lines). In addition, an ISM must be able to determine which regions of space are
likely to be occluded such as the space behind buses (highlighted blue) in light of almost identical local appearances (blue cyan boxes). Finally an ISM
should be able to distinguish ghost objects (dotted orange) from true second returns (green lines).

Assuming a likelihood p(yu,v = 1|zu,v) = Sigmoid(z),
the probability that cell yu,v is occupied is then given by
marginalising out the uncertainty associated with z:

p(yu,v|x) =

∫
p(yu,v|zu,v)pφ(zu,v|x)dzu,v (3)

Unfortunately the integral in (3) is intractable and is
typically approximated using Monte-Carlo sampling and
the reparameterization trick [7]. Instead, by introducing an
analytic approximation in Section III-E we show that we can
accurately and efficiently approximate (3) without resorting
to sampling.

One final problem remains. We expect our model to be
inherently uncertain in occluded space for which no lidar
training labels are available. How do we train fφ whilst
explicitly encoding an assumption that in the absence of
training labels we expect our model to be uncertain? In Sec-
tion III-D we propose to solve this problem by introducing
a normally distributed prior p(z) on the region of space
for which no training labels exist utilising the variational
inference framework.

D. Training with Partial Observations

In order to encode an assumption that in the absence of
training data we expect our model to be explicitly uncertain
we introduce a prior p(z) = N (z|µ,γI) on the uncertainty
associated with the occluded scene which our network reverts
back to in the absence of a supervised training signal. To do
this, we begin by treating pφ(z|x) as an approximate pos-
terior to p(z|y) induced by the joint p(z,y) = p(y|z)p(z)
where,

p(y|z) :=
∏

u,v

Bern(yu,v|pu,vy|z) (4)

pu,vy|z = p(yu,v = 1) = Sigmoid(zu,v) (5)

p(z) := N (z|0, γI) (6)
Sigmoid and Bern(y|p) = py(1− p)1−y denote the element-
wise sigmoid function and Bernoulli distribution.

Next given a set of observations D, we consider determin-
ing our parameters φ by maximising the variational lower

bound,
L(φ;D) =

∑

n

Ln(φ) (7)

Ln(φ) = Epφ(z|xn)[log p(yn|z)]− dkl[pφ(z|xn)||p(z)]
(8)

where dkl denotes KL divergence. The first term in Ln(φ) is
the expected log-likelihood under the approximate posterior
pφ(z|x) which, when optimised, forces the network to
maximise the probability of each occupancy label y. The
second term forces pφ(z|x) towards the prior p(z).

Crucially, by only evaluating the log-likelihood term in
the labelled region of space and only evaluating the KL
divergence term in occluded space, we are able to train our
network to maximise the probability of our labels whilst
explicitly encoding an assumption that in the absence of
training labels we expect our network to be inherently
uncertain. The latter is achieved by setting the prior to
p(z) = N (z|0, γI) corresponding to an assumption that
occluded space is equally likely to be free or occupied with
a fixed uncertainty γ. We tested multiple values of γ and
found that setting γ = 1 gave good results.

For a Gaussian prior and approximate posterior the
KL divergence term can be determined analytically, whilst
the expected log-likelihood is estimated using the repa-
rameterization trick [14] by sampling zl = µφ(x) +
γφ(x) ◦ εl where εl ∼ N (0, I). The expected log-
likelihood is then approximated as Epφ(z|x)[log p(y|z)] ≈
− 1
L

∑
l

(∑
u,v H[yu,v,pl,u,vy|z ]

)
where H denotes binary

cross entropy.
Finally our loss function becomes

L̂n(φ) =
ω̄

L

∑

l,u,v

I(ou,v = 1)Hα[ŷn,u,v,pn,l,u,vy|z ]

+
∑

u,v

I(ou,v = 0)dkl[pφ(zu,v|xn)||p(zu,v)] (9)

L̂(φ;D) =
1

N

∑

n

L̂n(φ) (10)

where I denotes the indicator function which is equal to 1 if
its condition is met and 0 otherwise.

In order to ensure that labelled and unlabelled data con-
tribute equally to our loss we re-weight the likelihood term
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with ω̄ = ωHW/(
∑
uv I(ou,v = 1)). The hyper-parameter

ω is used to weight the relative importance between our
prior and approximate evidence. As there is also a significant
class imbalance between occupied and free space we use
weighted binary cross entropy Hα where the contribution
from the occupied class is artificially inflated by weighting
each occupied example by a hyper-parameter α. Note that in
the partially observed region ou,v = 2 there is no loss.

E. Inference

Given a trained model pφ∗(z|x) = N (z|µφ∗(x),γφ∗(x))
we now wish to determine the probability that each cell is
occupied given input x by marginalising out the uncertainty
associated with the latent variable z:

p(yu,v|x) :=

∫
p(yu,v|zu,v)pφ∗(zu,v|x)dzu,v (11)

However, for likelihood p(yu,v|zu,v) = Sigmoid(zu,v) no
exact closed form solution exists to this integral. Instead
of resorting to Monte Carlo sampling we approximate the
sigmoid function with a probit function and use the result
that a Gaussian distribution convolved with a probit function
is another probit function [20]. Following this analysis, it can
be shown that,

p(yu,v = 1|x) ≈ Sigmoid

(
µu,vφ∗

su,vφ∗

)
(12)

where su,vφ∗
= (1 + (γu,vφ∗

√
π/8)2)1/2, µu,vφ∗

= µu,vφ∗
(x) and

γu,vφ∗
= γu,vφ∗

(x∗). This allows us to efficiently calculate py|x
as,

[µφ∗ ,γφ∗ ] = fφ∗(x) (13)

sφ∗ = (1 + (γφ∗

√
π/8)2)1/2 (14)

py|x := Sigmoid

(
µφ∗

sφ∗

)
(15)

Figure 4 shows py|x approximated using (15) and Monte
Carlo sampling for varying µφ∗ and γφ∗ . The Monte Carlo
estimate takes of the order 104 samples to converge, whilst
the analytic approximation provides a close approximation
to the converged Monte Carlo estimate.

In equation (15) the predicted logit µφ∗ can be thought
of as giving the score associated with labelling an example
as occupied; intuitively the higher the score the higher
the probability that each cell is occupied. In contrast, the
predicted deviation γφ∗ increases the entropy in the predicted
occupancy distribution independent of the cells predicted
score and captures uncertainties that cannot be easily ex-
plained by the predicted score alone.

IV. RESULTS

In this Section we show that our model, despite chal-
lenging noise artefacts, is able to successfully segment the
world into occupied and free space achieving higher mean
Intersection over Union (IoU) scores than cell averaging
CFAR filtering approaches. In addition to this we are also
able to explicitly identify regions of space that are likely
to be occluded through the uncertainties predicted by our
network. We provide several qualitative examples of our
model operating in challenging real world environments and

Fig. 4. Predicted occupancy probabilities py|x as a function of predicted
standard deviation γφ∗ using the analytic approximation given by (15)
(black) vs Monte Carlo approximation with L = 102 (left), L = 104

(middle) and L = 106 (right) samples. Each colour corresponds to a
different mean µφ∗ with [yellow, grey, purple, blue, red] corresponding
to means [−1,−0.3, 0.01, 0.3, 1] respectively. It is seen that the MC
estimate has high variance taking of the order 106 samples to converge to
the analytic approximation. On the other hand the analytic approximation
closely resembles the converged Monte Carlo estimate.
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Fig. 5. Our network architecture takes in a polar radar scan x ∈ RΘ×R

and maps it to Cartesian grids of mean utility µφ and aleatoric noise scale
sφ = (1+(γφ

√
π/8)2)1/2. Our network is composed of a polar (yellow)

encoder and a Cartesian (blue) decoder. At each polar to Cartesian interface
there is a polar transformer unit (red circle). Each blue rectangle corresponds
to 2 convolutions followed by a max pool.

study the effects of our prior on our network output through
an ablation study.

A. Experimental Set-Up

A Navtech CTS350x FMCW radar (without Doppler) and
two Velodyne HDL32 lidars were mounted to a survey
vehicle and used to generate over 78000 (90%) training
examples and 8000 (10%) test examples from urban scenes.
The output from the two lidars was combined from 0.7m
below the roof of the vehicle to 1m above and projected
onto a 600 × 600 grid, with a spatial resolution of 0.3m,
generating a 180m×180m world occupancy map, following
the procedure described in Section III-A. To account for
differences in the frequency of our radar (4Hz) and lidar
(10Hz) the occupancy map was ego-motion compensated
such that the Cartesian map corresponds to the time stamps
of each radar azimuth.

Figure 5 shows our network architecture in which a polar
encoder takes the raw radar output and generates a polar
feature tensor through repeated applications of 4 × 4 con-
volutions and max pooling before a Cartesian decoder maps
this feature tensor to a grid of mean logits µφ(x) ∈ RH×W
and standard deviations γφ(x) ∈ (0,∞)H×W which are
converted to a grid of probabilities through (15). Information
is allowed to flow from the encoder to the decoder through
skip connections, where polar features u are converted to
Cartesian features v through bi-linear interpolation, with a
fixed polar to Cartesian grid [19]. In all experiments we
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TABLE I
COMPARING OUR APPROACH TO CLASSICAL DETECTION METHODS

USING INTERSECTION OVER UNION

Intersection over Union

Method Occupied Free Mean

CFAR (1D polar) 0.24 0.92 0.5
CFAR (2D Cartesian) 0.20 0.90 0.55
Static thresholding 0.19 0.77 0.48
Deep ISM (our approach) 0.35 0.91 0.63

trained our model using the ADAM optimiser [21], with a
learning rate of 0.001, batch size 16 for 100 epochs and
randomly rotated each input output pair about the origin,
minimising the loss proposed in (9) with L = 25 samples.
Experimentally it was found that setting α = 0.5 gave
the best results in terms of IoU performance against the
lidar labels. Unless otherwise stated, the model evidence
importance was set to ω = 1.

B. Detection Performance of Deep ISM vs Classical Filter-
ing Methods

We compare the detection performance of our approach
against cell averaging CFAR [11] applied in 1D (along
range) for polar scans and in 2D for Cartesian scans by
determining the quantity of occupied and unoccupied space
successfully segmented in comparison to the ground truth
labels generated from lidar in observed space. Due to class
frequency imbalance, we use the mean Intersection Over
Union (IoU) metric [22]. The optimum number of guard
cells, grid cells and probability of false alarm, for each CFAR
method, was determined through a grid search maximising
the mean IoU of each approach on training data. For our
method, each cell was judged as occupied or free based on a
0.5 probability threshold on py|x. A 2m square in the centre
of the occupancy map, corresponding to the location of the
survey vehicle, was marked as unobserved.

The results form the test data set for each approach are
shown in table I and show that our approach outperforms
all the tested CFAR methods, increasing the performance in
occupied space by 0.11, whilst achieving almost the same
performance in free space leading to a mean IoU of 0.63.
Our model is successfully able to reason about occupied
space in light of challenging noise artefacts. In contrast,
the challenge in free space is not in identification, with free
space typically being characterised by low power returns, but
in distinguishing between observed and occluded regions, a
challenge which is missed entirely by the IoU metric. Figure
6a shows how our model is able to successfully determine
space that is likely to be unknown because of occlusion and
is able to clearly distinguish features, such as cars that are
largely missed in CFAR. An occupancy grid of size 600×600
can be generated at around 14Hz on a NVIDIA Titan Xp
GPU. Which is significantly faster than real time for radar
with a frequency of 4Hz.

C. Uncertainty Prediction

As described in Section III-E, by incorporating aleatoric
uncertainty into our formulation, the latent uncertainty asso-
ciated with each grid cell is allowed to vary by predicting the

standard deviation of each cell γφ(x) alongside the predicted
logit µφ(x). In this section we investigate the uncertainties
that are captured by this mechanism.

To do this we gradually increase a threshold on the
maximum allowable standard deviation of each cell γφ(x)
labelling any cell that falls below this threshold as either
occupied (white) or free (black), whilst every cell above the
threshold is labelled as unknown (grey). The result of this
process is illustrated in Figure 6d.

The standard deviation predicted by our network largely
captures uncertainty caused by occlusion, which, indepen-
dent of the true underlying state of occupancy, results in
space that is inherently unknown. From least likely to most
likely to be occluded, we move from high power returns
labelled as occupied, to a region nearby and up to the first
return, to space that lies in partial and full occlusion. This
ray tracing mechanism is largely captured by the standard
deviation γφ(x) predicted by our network.

D. Qualitative Results
Finally, we provide several qualitative examples of our

model operating in challenging real world environments and
investigate how the strength of our prior term in (9) effects
the occupancy distribution predicted by our model.

Figure 6c gives qualitative examples taken from the
test set. Our network is able to successfully reason about
the complex relationship between observed and unobserved
space in light of challenging noise artefacts. In Figure 6b
we vary the relative importance between the likelihood and
KL divergence term by varying the hyper-parameter ω in
(9). Increasing ω increases the relative importance of the
likelihood term and leads to an ISM which is able to more
freely reason about regions of space for which no labels exist
during training, using the labels available in the observed
scene. In the limit, of high ω the model is no longer able
to successfully identify regions of space that are likely to
be occluded, predicting all low power returns as free with a
high probability.

V. CONCLUSION
By using a deep network we are able to learn an inher-

ently probabilistic ISM from raw radar data that is able to
identify regions of space that are likely to be occupied in
light of complex interactions between noise artefacts and
occlusion. By accounting for scene context, our model is able
to outperform CFAR filtering approaches. Additionally, by
modelling heteroscedastic uncertainty we are able to capture
the variation of uncertainty throughout the scene, which can
be used to identify regions of space that are likely to be
occluded. Our network is self-supervised using only partial
labels generated from a lidar, allowing a robot to learn
about the occupancy of the world by simply traversing an
environment.

At present our approach operates under a static world
assumption. In future work we hope to incorporate scene
dynamics into our formulation allowing a robot to identify
cells that are likely to be dynamic in addition to occupied or
free.
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(a) The detection performance of our approach vs classical filtering methods with black representing predicted free and white representing predicted occupied
by each approach. In comparison to CFAR our approach results in crisp and clean detections in observed and unobserved space. The red rectangles highlight
cars that are clearly detected by our approach which are largely missed by CFAR. In addition, our model is able to successfully reason about what in the
scene is likely to be unknown due to occlusion.

(b) The predicted probability of occupancy for different values of likelihood importance ω. As ω is increased our model becomes increasingly less conservative,
reasoning in the unobserved region of space based on labels in the observed region.

(c) Our model successfully identifies occupied free and occluded space in challenging real world environments.

(d) A scene segmented as predicted occupied (white), unoccupied (black) and unknown (grey) for decreasing confidence thresholds (left to right) on the
predicted standard deviation γφ. From most certain to most least certain, we move from high power returns labelled as occupied, to a region nearby and
up to the first return, to space that lies in partial and full occlusion.

Fig. 6.
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