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Abstract— This paper is about detecting failures under un-
certainty and improving the reliability of radar-only motion
estimation. We use weak supervision together with inertial mea-
surement fusion to train a classifier that exploits the principal
eigenvector associated with our radar scan matching algorithm
at run-time and produces a prior belief in the robot’s motion
estimate. This prior is used in a filtering framework to correct
for vehicle motion estimates. We demonstrate the system on a
challenging outdoor dataset, for which current radar motion
estimation algorithms fail frequently. By knowing when failure
is likely, we achieve qualitatively superior motion estimates
and quantitatively fewer odometry failures. Specifically, we see
24.7% fewer failures in motion estimation over the course
of a 15.81km drive through a difficult, mixed rural-and-
urban scene, with lower RMSE in translational and rotational
estimates during particularly challenging conditions.

Index Terms— radar, sensing, ego-motion estimation, intro-
spection, field robotics

I. INTRODUCTION

Radar offers the field of robotics a new level of robust
sensing. While many of the hurdles in navigation have been
cleared using lasers or vision to great success, these tools
can only take us so far. Autonomous machines that can
function reliably in challenging unstructured environments
need a sensor that thrives in all conditions – rain, snow,
dust, fog, or direct sunlight. We also need our robots to
see further if they are to travel safely at higher speeds or
operate in wide open spaces where distinct features are few
and far between. These requirements are met in radar, which
provides a 360°-view of the scene and detects targets up to
500 m away. However, radar data is highly complex, making
any sort of inference challenging. Measurements contain
significant components made up of multipath reflections,
speckle noise, and other artefacts in addition to the radar’s
internal noise characteristics [1].

Despite this, recent work has presented precise radar-only
motion estimation algorithms that consistently outperform
visual odometry systems, even in conditions which are
favourable to vision [2, 3]. Yet, as we present in this paper,
the state-of-the-art Radar Odometry (RO) system with no
means of introspection is still prone to a high failure rate.
We can distinguish between a few common scenarios for
failures:
• Operation in off-road environments where the robot’s

motion is not truly planar causes large swathes of the
scene to disappear and reappear intermittently while the
robot is moving [4].
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Fig. 1. RO has no means of detecting odometry failures. Here between
the hedgerows the radar-only algorithm is starved of distinct features where
it is difficult to estimate forward ego-motion between measurements. Our
enhanced system addresses this and other common failure cases through
introspection, allowing RO to function robustly under the uncertainty
presented by challenging environments. Pose estimation is significantly
improved, and here translational speeds are shown to closely track the
baseline GPS measurements where previously RO had failed.

• Stationary or dynamic occluding obstacles (walls, buses,
dense vegetation) encountered in the scene lead to
sudden feature absence.

• A shortage of distinct features observable across
wide baselines creates ambiguity, as shown between
hedgerows in Figure 1.

In this paper, we present a system for both estimating con-
fidence in and correcting the solution of the scan matching
RO algorithm. At run-time, we use only the radar data itself
to detect failures based on a weakly supervised classification
procedure which is trained offline by data fusion. The clas-
sification output is passed to a motion correction system that
performs an update based on the reliability of the odometry
estimate.

We proceed by reviewing existing literature in Section II
and discuss some preliminary concepts in Section III which
will introduce notation and provide background on the rel-
evant operational aspects of the RO system. Sections IV
and V present necessary details for implementation before
Section VI, where we report our results showing superior
motion estimation performance under extremely challenging
conditions.



II. RELATED WORKS

Approaches to the correspondence problem using eigen-
vectors have been fundamental in the development of our
RO system, first described in [2]. Central to this is the
data association method that addresses the challenge of
determining matches between sets of landmarks. Scott and
Longuet-Higgins [5] present a general approach to cluster
features based on the distances between them. Using an ini-
tial proximity matrix as input, the algorithm finds the clusters
of features based on the eigenvectors of this matrix, ranked
using the magnitude of their eigenvalues. An association
matrix is computed to yield the strengths of the “bonds”
between features, based on methods found in molecular
physics. Building on this work, Shapiro and Brady [6] per-
form feature-based correspondence by incorporating shape
information together with these techniques. Their algorithm
is robust to translations, rotations, and scaling as it considers
the structure within the given image, unlike [5] which fails
when features in the first image are no longer neighbours in
the next. Closest to RO’s data association implementation is
the spectral technique of Leordeanu and Hebert [7], which
efficiently finds the consistent correspondences between two
sets of features using the principal eigenvector of a con-
structed adjacency matrix. This matrix is built from a graph
consisting of nodes representing each potential match, and
weights on the respective links that represent the pairwise
agreements between these correspondences. This elegant
approach sees correct assignments establish strong links
between each other and is inherently robust to outliers, while
being considerably faster than existing methods.

The data association algorithm implemented in RO that
establishes links between landmark sets has no means of
introspection. That is to say, an odometry estimate based on
the proposed correspondences is made regardless of how well
the landmarks have actually been matched. It is suggested
in [2] that the portion of landmarks that have been matched
provides a measure of uncertainty, which begins to provide
indication that a given solution might be unsuitable to use in
the next odometry estimate. A more rigorous approach native
to the correspondence algorithm itself is discussed in [7],
which looks at the difference in magnitude of the first two
largest eigenvalues, known as the eigengap. If a proposed set
of assignments between the points is not particularly distinct,
the eigenvalues of the two largest eigenvectors will be similar
in magnitude, as they both correspond to similarly plausible
solutions. In other words, no single solution emerges above
the other possible assignments, as would be the case if a
distinctive set of matches could not be found. The authors in
[7] note that this occurs when there is excessive symmetry
in the data, too many outliers, or high deformation noise.
Further to this insight, Sakar and Boyer [8] provide an
extensive study on the stability of the eigenvalues and the
corresponding robustness of the eigenvectors, and apply this
to monitor change in how features are organised in images. In
the context of ranking citation information (or web pages),
Ng et al. [9] analyse the stability of the eigenvector and

provide a simple example that illustrates why a small eigen-
gap corresponds to a less distinctive solution, i.e one that is
sensitive to small perturbations in the graph.

To improve RO under failure, we turn to the Kalman
Filter (KF), a widely-adopted algorithm that provides a
means to estimate under uncertainty [10]. In [11], the authors
describe a probabilistic test to detect failures based on the
KF estimates, where the system model and the corresponding
sensory data should always be statistically coherent. This
coherence is modelled as a χ2-distribution where a simple
threshold can be used to detect failures in the sensor mea-
surement stream. A positive failure detection causes the KF
algorithm to reject the corresponding sensor measurement.

Our proposed method makes use of an external classifier
that flags motion estimation failures prior to the motion
correction stage. This addresses the limitations of the ap-
proach in [11], where consecutive failures (that lead to an
accumulation of uncertainties) result in a system that will be
more tolerant to taking on poor sensor measurements.

III. PRELIMINARIES

We use a Frequency-Modulated Continuous-Wave
(FMCW) scanning radar which rotates about its vertical
axis while sensing the environment continuously through
the transmission and reception of frequency-modulated
radio waves. While rotating, the sensor inspects one angular
portion (azimuth, α) of space at a time and receives a
power signal that is a function of reflectivity, size, and
orientation of objects at that specific azimuth and at a
particular distance, ρ. The radar takes measurements along
an azimuth at one of M discrete intervals and returns N
power readings, or bins. We call one full rotation across all
M azimuths a scan S. Furthermore, let s(k) ∈ RN×1 be
the power-range readings at time step k, where t(k) = tk is
the time value at k and α(k) ∈ A is the azimuth associated
with the measurement. The element si(k) ∈ s(k) is the
power return at the i-th range bin, with i ∈ {1, . . . , N}; its
measurement range is given by ρi(k) = β(i − 0.5), where
β is the range resolution of the radar.

Our work builds upon our odometry estimation pipeline
first described in [2], which we summarise here. The first
aim is to extract features from the sets of power-range
spectra measured by the radar as it scans the environment,
and describe them as a set of landmarks characterised by a
position in space relative to the radar and a power value. This
is nontrivial due to the complexity of the radar data itself,
which is susceptible to multipath reflections, harmonics,
speckle noise, and other hindering effects [1, 3].

Given two so-obtained landmark sets, L1 and L2, the
next task is to associate each landmark from L1 with a
single corresponding landmark in L2. As in [7], we pose
this data association as a pairwise problem. This leverages
the assumption that the set of distances from each point to its
neighbours is unique to that point in all observations, regard-
less of the relative translation and rotation between scans.
This allows the landmark to be matched to its counterpart
in any other landmark set that contains sufficient overlap.



After extracting a set of possible unary candidates B of size
W we build a pairwise-compatibility matrix C, which is a
non-negative symmetric matrix of size W ×W containing
the score for each pair of proposed matches.

The vector m ∈ {0, 1}W is a solution of the data
association problem, where mi = 1 for a unary match B{i}
that is considered or mi = 0 otherwise. The optimal solution,
i.e. the solution that maximises the overall compatibility, can
be computed as:

m∗ = arg max
m∈{0,1}W

mTCm (1)

As m is discrete, the above maximisation is computation-
ally difficult. So inline with [7], we relax this constraint to
find the continuously-valued u∗:

u∗ = arg max
u∈[0,1]W

uTCu (2)

The elements in u∗ are only relevant in their respective
values to each other, so we can normalise u∗ and from
Rayleigh’s quotient theorem we iterate to obtain the u∗ that
is the principal eigenvector of C [12]. The optimal solution
m∗ is approximated from u∗ using a greedy algorithm,
as described in more detail in [2]. Finally, the relative
motion between the observations that yielded L1 and L2

is estimated using a singular-value decomposition algorithm
[13]. In addition to the above description, we add a new
component to the RO system to account for the motion
during a scan that would otherwise cause significant distor-
tions in landmark positions at higher speeds. By assuming
constant velocity between motion estimates, landmarks are
repositioned relative to the interpolated position of the robot
at the time at which they were observed.

IV. METHODOLOGY

We begin in Sections IV-A and IV-B by describing how we
use inertial measurements recorded alongside radar scans to
automatically label a set of eigenvectors from RO as good or
bad. Section IV-D discusses a classification procedure which
makes use of the principal eigenvector from the motion
estimation algorithm discussed in Section III, allowing us
to predict the reliability of the odometry estimate at run-
time introspectively without access to inertial measurements.
Section IV-E concludes this section by discussing a motion-
correcting KF implementation which uses these scores as
priors for the motion of the vehicle and propagates the belief
through the motion estimation pipeline.

A. Alignment of GPS and radar data

The GPS acceleration readings augmented with INS mea-
surements are integrated twice to obtain a list of relative
6DoF poses. The 6DoF extrinsic calibration between the
radar and GPS is used to express these measurements in the
radar’s frame of reference. As the radar data is interpreted in
two dimensions on the xy-plane, the GPS poses need to be
projected onto the ground plane [14]. Finally, both radar and
GPS pose sources are differentiated to obtain frame-to-frame
translational and rotational velocity measurements.
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Fig. 2. Aligned instrumentation for GPS and radar sensors used in the
training phase of this system. Here we show translational rates. The GPS
rates are shown as a moving average, with bounds that lie two standard
deviations from the mean. These thresholds are used to trigger labelling
events – when the radar rate exceeds them, we produce a bad label.

B. Labelling odometry estimates

As a trade-off between quantity and quality of labelled
data, we use a form of weak supervision known as inaccurate
supervision [15], where information in the ground truth
data presented to the model may suffer from errors. The
GPS readings are preprocessed to allow direct comparison
with our RO outputs. We take a moving average over
the translational velocities and define an upper and lower
bound two standard deviations either side of this. Any RO
estimates that fall outside these bounds are labelled as bad,
or good otherwise. Figure 2 shows the signals used in
this comparison. After this automatic label generation, we
use a median filter to improve training label consistency –
during periods of failure these initial labels switch rapidly
in and out of bounds, even though the associated principal
eigenvectors all correspond to poor matches (evident around
520 s in Figure 2). We refer to these instances in Section IV-
C as brittle estimates, and discuss further implications in
Section IV-D. Note that this framework is flexible to using
another baseline signal to produce labels – RTK-corrected
GPS traces [16] could have been used as a substitute for our
inertial measurements.

C. Eigenvector insights

Each element in the eigenvector can be interpreted as
a contribution of a particular pairwise match between two
landmarks to the overall proposed alignment. As RO’s greedy
algorithm from [2] selects matches based on the ordering of
these elements, it is natural to want sort these in descending
order of magnitude. In Figure 3, we observe that for well-
posed data association problems, RO produces eigenvectors
that have many similar element magnitudes. Conversely,
when there is greater variance among the eigenvector ele-
ments, we generally observe a weak match that coincides
with a bad odometry label. This is intuitive: all things being
equal, the algorithm should depend relatively evenly on all
available points. But if reliance on these landmarks is not
particularly uniform, it indicates abnormally high uncertainty
in the compatibility of two landmark sets. This could be a
result of a comparison between landmark sets that simply
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Fig. 3. A sample of eigenvectors produced during the data association step
of the RO system. We sort each eigenvector’s elements in descending order
of magnitude. Odometry estimates labelled good and bad correspond to blue
and red curves respectively. Here, we observe that bad eigenvectors typically
start off steeper and vanish to zero quicker than their good counterparts –
this is the decision boundary that the SVM classifier must learn.

do not match well, or more interestingly, it could indicate
a brittle solution that is well matched in that it produces
plausible odometry, but is likely to fail imminently. In our
robotics application, these cases are highly susceptible to
failure in the presence of any rolling, pitching, occlusion,
or other environmental factors that could cause those crucial
landmarks to be absent from the next measurement.

D. Training the classifier

Having discussed the origin of the principal eigenvector
in Section III and provided insights into what it encodes
in Section IV-D, we now turn to training of a classifier.
As described in Section IV-B, we have annotated these
eigenvectors as belonging to the good or bad class. To
predict the class of a given eigenvector, we train a SVM
classifier [17] with an RBF kernel which we found in practice
to outperform other commonly used classifiers like random
forests and Convolutional Neural Networks in this instance.
However, the eigenvectors are not of consistent length as the
compatibility matrix is populated by pairwise unary matches
for candidate landmarks which vary in number from scan to
scan. Along with sorting the elements in descending order,
we found that performing a simple feature extraction step
on the eigenvector before training improved performance.
Other approaches included padding eigenvectors with zeros
or naı̈vely generating a linearly spaced array of the elements
to force them to a standard equal length. The selected
features are now described and substantiated in detail.

1) Magnitude of maximum eigenvector element: the
greedy algorithm responsible for approximating m∗

from u∗ uses the pairing related to the highest element
magnitude of the eigenvector first:

F1 = max
i

u∗i

This feature gives an idea as to how strongly the
pairwise match of highest confidence contributes to a
particular solution. Higher values tend to suppress other
pairwise matches and result in fewer pairs being used
in the odometry estimate.

2) Number of candidates: the number of possible
matches, i.e. the cardinality of the unary matches set,
also encodes information on the robustness of a solution
based on how many pairs of landmarks are available to
be associated.

F2 = ‖u∗‖ = min(‖L1‖, ‖L2‖)

3) Area below the curve: the area bounded by the eigen-
vector, defined as

∑
i u
∗
i , encodes the shape of the curve

itself in a compact way. Note that the u∗ vector is
defined as a unit vector, such that:

F3 =
∑
i

u∗i 6=
√∑

i

u∗i
2 ≡ 1

Since the area of this constrained shape is maximised for
a broad rectangle created by relatively similar element
magnitudes, overdependence on a smaller subset of
matches with higher contributions will lead to a smaller
area value.

In addition to these features from the present eigenvector,
it is possible to add to the feature space the same three
features for N previous odometry estimates, which allows
the current eigenvector to be placed in context with what
has happened in the recent past. This should aid inference –
sudden fluctuations in feature values tend to correspond to
bad RO estimates. Section V discusses the implications of
these additional features and details performance in Figure 4
with different values of N .

Prior to training, features are scaled in a standardisation
step to have zero mean and unit variance to handle the range
of magnitudes and minimise the effects of outliers [18]. We
elect to use the tried-and-tested SVM for classification as
it is easy to train on our number of features and performs
satisfactorily for our application. As with the motion cor-
rection module of the pipeline, the choice of classifier for
this framework is also flexible. In practice, the SVM learns a
class boundary that classifies the majority of curves that look
like they lead to a poor solution as bad. This is not always
the case: sometimes a match that is excessively dependent
on a subset of landmarks, or that has other concerning signs
already discussed, will in fact lead to a good RO estimate
(and sometimes be labelled as such, being acceptable to the
GPS baseline and slipping past the median filter). This is a
significant insight – the classifier will detect these brittle
solutions, which do not always coincide with bad ones.
We desire this in the motion correction phase outlined in
Section IV-E as it is preferable to defer to a model when high
uncertainty in a solution is present, regardless of whether the
proposed RO estimate would classify as good or bad.

Due to the nature of this failure detection problem, many
more examples of good RO are available in the training
data. We select average precision as our evaluation metric
from the Precision-Recall curve as it gives the clearest
insight into binary classifier performance on imbalanced
datasets [19]. At run-time, we use the SVM to classify the
latest eigenvector from the data association step and treat the



binary classification output as a prior belief in the reliability
of the odometry estimate. This failure detector forms the
core of our contribution – providing RO with a means of
introspection.

E. Motion correction

A KF technique [10] is used to propagate the belief
through the motion estimation pipeline. The system model
is given by:

xk = Ak xk−1 + εk

zk = Ck xk + δk
(3)

where xk and zk are the state vector and the sensor readings
at the k-th instant respectively. We denote the motion and
sensor models as Ak and Ck, with corresponding error terms
εk and δk. We exclude the control input matrix, and we
consider it as included in the εk error term. In this work, we
select a constant velocity model for Ak (which could easily
be substituted for a more complex model) and use Ck to
sample the relative poses from RO directly.

While the prediction process is carried out at each step –
yielding the motion estimate µm and motion covariance Σm

– the sensor update is computed only if the eigenvector that
produced the proposed match has not been flagged by the
failure detector. In that case, the intermediate results µs and
Σs are calculated.

A second stage determines if the proposed sensor update
is consistent with the expected motion. Note that although
the SVM classifier output is not dependent on the motion
model, this additional test relies on it largely. We use the
technique described in [11] to calculate a probabilistic index
and define the scalar quantity λ as:

λ = (µm − µs)
T (Σs − Σm)−1 (µm − µs) (4)

It has been demonstrated that λ follows a χ2 probability
distribution. We set a threshold k on the value such that if
λ ≥ k we reject the sensor reading and update the model
with µm and Σm instead of µs and Σs.

V. EXPERIMENTAL SETUP

Test data is collected on the Oxford RobotCar plat-
form [20], with the addition of our radar sensor.

A. Hardware

We employ a CTS350-X Navtech FMCW scanning radar
without Doppler information, mounted on top of the platform
with an axis of rotation perpendicular to the driving surface.
It is characterised by an operating frequency of 76 GHz to
77 GHz, capturing 400 azimuth readings per rotation at 4 Hz,
with a beam spread of 2°. Each azimuthal slice contains
3768 range measurements at a bin resolution of 0.1752 m.
For inertial and GPS measurements, the vehicle is equipped
with a NovAtel SPAN-CPT Single Enclosure GNSS/INS
Receiver1 that provides fused GPS and INS measurements.

1https://www.novatel.com/products/
span-gnss-inertial-systems/span-combined-systems/
span-cpt/
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Fig. 4. Plot motivating the choice of hyperparameter N showing the
effects on average precision for varying N values. As the number of
preceding eigenvectors increases, the classifier performance also rises, until
a maximum value where N = 7. These average precision values are taken
from a mean of the scores obtained on the training set during cross validation
using 5 folds.

B. Dataset curation

RO performs excellently in central Oxford where it esti-
mates precise odometry with ease. However, as mentioned
in Section I, failures are common when traversing uneven
ground or driving between hedgerows at higher speeds. For
this reason, we seek to train and evaluate our enhanced
RO system on this challenging rural Oxfordshire data. For
training, we use radar and GPS data from a single run of a
15.99 km route. At test time, we produce odometry estimates
using only radar data as input on a different 15.81 km
route in similar surroundings. Training and evaluation were
performed in scikit-learn [21] prior to C++ implementation
in the enhanced RO system.

C. Training details

We train on a rural Oxfordshire dataset consisting of
5956 radar scans captured during 15.99 km of driving. This
produces 5955 labels, of which 21.24 % are labelled bad
RO. After feature extraction, the dataset is shuffled and
split by a 80 % to 20 % training-testing ratio. Using k-fold
cross-validation, a grid search that maximised the classifier’s
average precision yielded a linear kernel with a C value
of 1. A further search over values of hyperparameter N
determined the optimal number of preceding eigenvectors
to use including the latest candidate was 7, as shown in
Figure 4. Over the training set, average precision was 75.3 %.
The precision was 63.3 % with a recall of 95.5 %.

The testing set sees an average precision of 75.9 %, for a
corresponding precision and recall of 62.3 % and 95.7 % re-
spectively. Due to the nature in which RO fails, labels gener-
ated automatically using inaccurate supervision as mentioned
in Section II tend to fluctuate rapidly between good and bad
during a period of consecutive failures. As already discussed
in Section IV-D, the SVM learns a decision boundary that
will classify these brittle matches as bad. Figure 5 shows
the effect of passing the labels through a median filter of
width 5 where we enjoy a 8.93 % performance boost in our
average precision metric.

https://www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-cpt/
https://www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-cpt/
https://www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-cpt/
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the classifier’s tendency to flag brittle RO as failure in Section IV-D.

VI. RESULTS

Figure 6(a) motivates our addition of each new section of
the system and shows the key result of our overall introspec-
tive addition to RO. The combination of the failure detection
and motion correction enhancements sees a reduction in the
total number of failures over 6635 matches from 695 to 531
(24.7 %), where failures that are still present have reduced
from a translational RMSE of 11.112 m s−1 to 8.256 m s−1

and rotational RMSE of 7.740 ° s−1 to 2.418 ° s−1. Table I
gives a detailed overview of estimation performance im-
provements. As illustrated in Figure 6(b), the standard RO
system is insufficient in this challenging setting, as the recov-
ered global pose is subject to serious drift and some outright
failures. The global pose available from our system more
closely matches the shape traced by the GPS readings, which
we show here for a qualitative comparison. Figure 7 gives
insight into the system’s improved performance in recovering
translational speeds for each additional component, plotted
alongside the GPS baseline and the corresponding bounds.

Despite significant improvement over standard RO perfor-
mance, the enhanced system’s ability to recover a motion
estimate under large uncertainties is limited. This is espe-
cially prevalent during periods of prolonged failure, where
the system is forced to depend excessively on the most
recent reliable motion estimate. By deferring to a constant
velocity model during periods of likely failure, more complex
trajectories can stretch the motion correction process beyond
its limits. This is evident in Figures 7(b) to 7(d) where a
handful of failures are introduced.

By making use of the principal eigenvectors to detect
failures at run-time, our complete system enhances the KF
with χ2 method by rejecting bad matches before they can
be considered by the χ2-test. Without this introspection,
the filter’s tolerance on uncertainty expands to the point of
eventually accepting a bad estimate, evident in Figure 7(c)
between 250 s to 300 s. Note that the addition of the failure
detector does introduce a few minor additional failures, as
it can be overly sensitive to brittle solutions. However, we
assert that the system’s ability to know when these failures
are occurring could reduce future failures if we were able to
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Fig. 6. Comparison between experiments showing quantitative reductions
in the distributions of failure case magnitudes and qualitative improvements
in the recovered global pose.

take action more appropriate to the current state, perhaps in
some form of feedback loop. We leave this for future work.

VII. CONCLUSIONS

We have presented in this paper a system for online
introspective analysis and correction of a radar-only motion
estimation scan matching algorithm. The analysis is boot-
strapped in a weakly supervised fashion using data fusion,
but relies solely on the principal eigenvector associated with
the radar motion estimate at run-time. We have shown that
the resulting classifier can be used to maintain an evolving
prior belief in the motion that the robot undergoes which
is exploited by a statistical filter to optimise the quality
of the recovered motion. We demonstrated and evaluated
our system on an outdoor dataset which challenges the
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Fig. 7. Comparison of experiments for performance in estimating translational speed over 6635 matched frames. The standard RO system in Figure 7(a)
sees 695 failures. Adding a KF in Figure 7(b) brings this down to 560 failures, with an addition of the χ2-test in Figure 7(c) reducing this further to 442
detections. Finally, the incorporation of introspection in the form of the classifier output shown in Figure 7(d) adds a small percentage of failures (1.34%),
but these have a lower RMSE during failure and improve performance under prolonged periods of difficulty.



TABLE I
METRICS FOR SYSTEMS UNDER FAILURE COMPARED TO GROUND TRUTH

System Failure [%] Translation* [ms−1] Rotation* [° s−1]

Failure Overall Failure Overall

RO 10.473 11.112 4.755 7.740 3.899
RO, KF 8.440 8.739 3.567 2.271 2.826
RO, KF, χ2 6.661 9.167 3.263 2.580 2.791
Enhanced RO 8.003 8.257 3.284 2.418 2.794

*RMSE values while under failure, and on the overall performance for this
particularly challenging dataset. Please see [2, 3, 4] for performance metrics
on other less challenging datasets. We remind the reader that datasets used in
this paper were intentionally selected to expose where our previously existing
RO system fails and highlight the benefits of the introspection addition.

current state-of-the-art in radar-only motion estimation and
produced qualitatively and quantitatively superior RO ego-
motion estimation.
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