mrg-admin

/Oxford Robotics Institute

About Oxford Robotics Institute

This author has not yet filled in any details.
So far Oxford Robotics Institute has created 66 blog entries.

Road vehicle localization with 2D push-broom lidar and 3D priors

In this paper we describe and demonstrate a method for precisely localizing a road vehicle using a single push-broom 2D laser scanner while leveraging a prior 3D survey. In contrast to conventional scan matching, our laser is oriented downwards, thus causing continual ground strike. Our method exploits this to produce a small 3D swathe of laser data which can be matched [...]

Road vehicle localization with 2D push-broom lidar and 3D priors 2016-10-22T19:49:35+00:00

Laser-only road-vehicle localization with dual 2D push-broom LIDARS and 3D priors

In this paper we consider long-term navigation using fixed 2D LIDARs. We consider how localization algorithms based on scan-matching - commonly used in indoor environments - are prone to failure when exposed to a challenging real-world outdoor environment. The driving motivation behind this work is to produce a simple, robust system that can be utilized repeatedly over a long period, rather than [...]

Laser-only road-vehicle localization with dual 2D push-broom LIDARS and 3D priors 2016-10-22T19:49:35+00:00

LAPS – Localisation using Appearance of Prior Structure: 6-DOF Monocular Camera Localisation using Prior Pointclouds

Abstract— This paper is about pose estimation using monocular cameras with a 3D laser pointcloud as a workspace prior. We have in mind autonomous transport systems in which low cost vehicles equipped with monocular cameras are furnished with preprocessed 3D lidar workspaces surveys. Our inherently cross-modal approach offers robustness to changes in scene lighting and [...]

LAPS – Localisation using Appearance of Prior Structure: 6-DOF Monocular Camera Localisation using Prior Pointclouds 2016-10-22T19:49:35+00:00

Planes, Trains and Automobiles. Autonomy for the Modern Robot

Abstract—We are concerned with enabling truly large scale autonomous navigation in typical human environments. To this end we describe the acquisition and modeling of large urban spaces from data that reflects human sensory input. Over 181GB of image and inertial data are captured using head- mounted stereo cameras. This data is processed into a relative [...]

Planes, Trains and Automobiles. Autonomy for the Modern Robot 2016-10-22T19:52:23+00:00

Continuous Vehicle Localisation Using Sparse 3D Sensing, Kernelised Renyi Distance and Fast Gauss Transforms

Abstract—This paper is about estimating a smooth, continuous-time trajectory of a vehicle relative to a prior 3D laser map. We pose the estimation problem as that of finding a sequence of Catmull-Rom splines which optimise the Kernelised Rényi Distance (KRD) between the prior map and live measurements from a 3D laser sensor. Our approach treats [...]

Continuous Vehicle Localisation Using Sparse 3D Sensing, Kernelised Renyi Distance and Fast Gauss Transforms 2016-10-22T19:49:35+00:00

Dealing with Shadows: Capturing Intrinsic Scene Appearance for Image-based Outdoor Localisation

  In outdoor environments shadows are common. These typically strong visual features cause considerable change in the appearance of a place, and therefore confound vision- based localisation approaches. In this work  we describe how to convert a colour image of the scene to a greyscale invariant image where pixel values are a function of underlying [...]

Dealing with Shadows: Capturing Intrinsic Scene Appearance for Image-based Outdoor Localisation 2016-10-22T19:51:54+00:00

Driven Learning for Driving: How Introspection Improves Semantic Mapping

This paper explores the suitability of commonly employed classification methods to action-selection tasks in robotics, and argues that a classifier’s introspective capacity is a vital but as yet largely under-appreciated attribute. As illustration we propose an active learning framework for semantic mapping in mobile robotics and demonstrate it in the context of autonomous driving. In [...]

Driven Learning for Driving: How Introspection Improves Semantic Mapping 2016-10-22T19:51:45+00:00

Semantic Mapping

Autonomous vehicles operating in places like parking lots can leverage of a higher-level understanding of the objects around it. For instance, the knowledge hat there is an upcoming zebra crossing should be taken into account in the vehicle’s current motion plan and speed. Also labelling of parking spots, could be crucial in other  tasks as efficient assignment of [...]

Semantic Mapping 2017-03-21T12:07:18+00:00